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FOREWORD 

This interim report summarizes the efforts and accomplishments of 
B the subject contract during the period 28 June 1974 through June 1975. %he 

study was conducted for the NASA-Lewis Research Center, Cleveland, Ohio, 

by personnel in the Computational Mechanics Section, Lockheed-Huntsville 

Research & Engineering Center, Huntsville, Alabama. The NASA-LeRC 

Project Engineer is Dr. C. C. Chamis, Mail Stop 49-3. 

S. T. K. Chan and C. H. Lee were the principal investigators for the 

study. During the early stage of this investigation, J. N. Reddy was also 

involved and contributed to the mechanics of high velocity impact. The study 

was supervised initially by M. R. Brashears and later by B. H. Shirley. 

Work was begun on this contract on 28 June 1974 and all technical work 

is to be completed by April 1976. Efforts on this contract are’ being directed 

to the numerical solution of the three-dimensional high velocity impact problenj 

based on the hydroelasto-viscoplastic formulation. Provisions will also be 

made to hook up the developed program with existing elements in the NASTRAN 

program through a coupling of Eulerian and Lagrangian modes. 
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ABSTRACT ’ 

A finite element algorithm for, sol&g unsteady, three-dimensional 

high velocity impact broblems is  presented. The comptiter progjx!m is  based 

on the,Eulerian hydroelasto-viscop2stic formula@& and the uti,lization of the 

theorem of weak sol&ions. so that the entropy condition is  satisfied auto- 

matica’lly. The equations to be solved consist ofi conservation of mass, 1: 
momentum, and enerby, equation of state,‘and appr&priate constitutive equa- 

tion s  . The solution technique is  a &me-dependent knite element analysis 

utiliz ing three-dinietisional isoparametric elements; in conjunction with a 

generalized two-step time integration scheme. T l& developed co&e is  demon- 

strated by solv ing o&-dimensional as well as three-dimensional impact prob- 

lems for both the inv$scid hydrodynamic model andlthe hydroelasti-viscoplastic 

model. I f, 
I, d 

. B 
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1. INTRODUCTION 
.& 

!.’ ~. 

:,. 
I . 

.: ;‘;:!‘;7.. 
’ 4 ‘..._,: “.:A?.- 

,“: ;J- :-7& Over the last two decades considerable ins&rest has been .shown ii?&& 
,. . 

study of high velocity impact problems. This is grimarily due to the need-” 

for t$e developmer$ 
. 

I 
of faster projectiles and they,‘>nformation corkeking the 

meteoroid hazard SKI these project$es. Cur&ent,,;inter&st in high,vilocity &I- m 

pact studies is largely due to the 2oncern over the impact of interplanetary: 

debris on space v&icles. However, these resedrch results have other 

industrial applicat$ons; for instance, in the high kelocity impact of objects.“- 
.I 

on &rbine blades, $;e., 
,J 

rocks, bir:ds or metals. ‘?, 
: ,+j 

). I. -. M 
, 

‘i’ Motivated by military applications, 
+ 

seven’ symposiums were held bi 
_. .: 2 

the subject during 2455-65 [l-7] under the sponsorship of the Army, Air Fyrce 
. 

and Navy. The. bul.5 of -the mater&l presented at%hese symposium; consisted .&&3> 
of experimental results and very little appcared”on the theories explaining-the 

high velocity impact phenomena. 
-_,.,. -. 

BDuring the late 1960s efforts were cm&c:d ~,. 
towayd formulatingwrealistic theoties to explain the complex dyncmjc. an+ 

mechanical response of materialsfin hypervelocity impact [8-123 . ; 
5 42 

: --d&a?& 
” The term “hypervelocity” (oar high velocity) refers to tile &np,acPt ve:a 

!-.,’ ‘c_i’ty $egime in which the maximum stress developed by the primar$k sho&, 
i. . . E-‘ ?.a-v_e;greatly exceeds the materia?strengths of bbth the target and.. the pz& 

4 ,jecti_l,e. During the early stages of the impact process, the target and the 3 

;;- projectile behave essentially as compressible fluids and, consequently.+., 

. ;,,.,-seyhal researchers’[13-161 I h ave employed pure hydrodynamic models~~..to...-;‘\ 

analtie the hypervelocity impact problems. However, these shockl&ress& .r 
\ .dec& very rapidly as the wave propagates away from the rmpact Faint zir&* 

reacy values comparable to the material yield strengths. F,rom this point J 

onwatd the material strengths become important in determining the stress 1 
,.I 

and,tielocity fields in the target material and, consequently, due to more 
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involved material response to these rapidly applied stresses, the process 

gets more complicated. Hence, the purely hydrodynamic model cannot ade- 

quately describe the complex physical phenomena [17] and a more realistic. 

model must be employed to account for all aspects of the high velocity impact . 
phenomena. Several researchers have included the strength effects (e.g., 

see [18]) and there appeared many computer codes using more realistic 

hydrodynamic lelastic -viscoplastic models, [lo] and [ 19 -231. The numerical 

techniques were largely based on the finite difference method, and they appear I 
to be suited for relatively simple (and in particular to hydrodynamic) problems. e 

Since a hydrodynamic-elastic-viscoplastic model is basically a structural I 
model, it would be appropriate to use structural techniques to solve the problem. 

. Also, during the impact process, the geometry involved is generally very co’m- 

plicated, which would necessarily require a versatile and flexible technique in 

order to treat it accurately and realistically. The finite element ,method, which 

has proved to be highly successful in analyzing structural problems, is considered 

such a candidate. Leimbach and Prozan [24] h ave shown the superiority of the 

finite element method over the finite difference ,method for a simple impact 

problem, although their model is rather s’imple and unable to predict the actual 

dynamical response of materials in the impact region. _. 

The general objective of the present study is to develop a three-dimensional 

finite element code to analyze structural components subjected to high velocity 

impact, using governing equations based on Eulerian and Lagrangian formulat.ion s. 

In particular, the impact point with its vicinity is to be represented by an Eulerian 

hydrodynamic-elasto-viscoplastic model, while the remaining structural com- 

ponents are to be analyzed with existing computer programs for structural anal- 

ysis such as NASTRAN. To bridge the gap between the Eulerian mode used for 

the impact region and the Lagrangian mode generally employed in structural 

analysis, a finite element code based on coupled Eulerian and Lagrangian form- 

ulation is being developed to match the two solutions. The computer progra’m 

will, at the end, be capable of handling static and dynamic response of large 

deformations, anisotropic material behavior, plastic yielding and material 

fracture. 

l-2 



,,:... .-. ..I Y.:;“:g _ _-. __, ,, This report contains mainly Phe development of a finite element eo;mj 

L~-Z-~~~pute$ program for the numerical solution of three-dimensional +gh:v~el’occ>$ 
pisyf$‘xJ&3J 
w~Qyy~’ problems J based on the Eulerian hydroelasto-viscoplastic fo.rmula%i&n. 

f#g&z;.::j 
e . . quations to be solved consist of conservation of ,mass, moment&; -a&d 

., 
; ?&gh9~Y 9 equation of state, and appropriate constitutive equations. 

; :: 
The; pw& _ 

‘. 
..q&&# br$. .y : ;: ariables, i.eg density, momentum, total energy, and stresses, are’hk,ccl 

; ;h as .pr’mary unknowns in the computations. The solution technique de;e~;;:+j 
1 5f . . .-:?. 
in th’. 

. . 3% ;.:.,:<.. 
&. . . ..# study is a time-dependent finite element analysis utilizing three:- 

dimensional isoparametric elements. 
j-t :. 

The finite:,element analog of the .gov>rn- 
.;:’ ,;.. 

ing equations is constructed as a consequence of .$he theorem of weak solutions, 
0; iz.: 

so that the entropy :condition can be satisfied automatically in the formulation. ‘J I : ,- 
As an integrated part of the algorithm, a generalized tvio-ste;>, time-splitt&g 

finite element scheme is proposed:,to remedy the&umerical ins&bilities during 

time marching. Y’ I 
“L.&: 

Following this introduction, a description of ,the Eulerian, Lagrangian, 
-.- ~. _ 

and coupled Eulerian-Lagrangian formulations are presented in SectiV-n 2. . 
The latter formulation is believed\0 be useful ,in the latter stages of develop- 

men% In Section 3~ the mechanics of high velocity impact arc discussed and 

the-governing equations are presented in the conservative (divergepcc) for?, 

.alon& with the specific form of the,,equation of state for metals. A ,general~ 
., ,’ dis&ssion of initial and boundary conditions is also presented. Se,cti.on 3 j;: 

“adyo.&d to the finite element formulations investigated earlier, uti&izing co,? - 
B 

ventiBna1 methods of weighted re &duals, for governing equations with. Egl,e;q i:rn 

desc%iption. 
&:$, .- -’ .., 

In addition to problem formulation, *element desc riptianL and-.; 

,numarical integrations are also discussed. Two time integration s&ieme s ;, 

@?&m-&y, the implicit finite difference and the Galerkin in time, arc. dcscriljetl 

&,l.at.th& end of this section. Presented in Section 5 is an improved finite elcl 
.A’ 

“%kalgorithm based on the Eulerian hydroelasto-viscoplastic formulation., 

t, . . ‘:‘L&%~ the theorem of weak solutions, together with a generalized ttio--step J. 
: -. .‘.j 
t‘ ‘, time A splitting scheme. Free surface considerations and large syst&+equa- 

k- tion%olver are also discussed and will be integrated into the [inal versian lof 
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the computer code. Section 6 summarizes numerical results .and findings on 

a number of test problems. They ,include the heat conduction problem in solids, 

impact problems computed with an inviscid hydrodynamic model, and a problem 

computed with the hydroelasto-viscoplastic model. Summarized in Section 7 

are the findings up-to-date together with further investigations to be conducted 

during the remaining period. 

l-4 
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2. VARIOUS DESCRIPTIONS AND FORMULATIONS 

Consider an open (i.e., not including its boundary) bounded region no 
“. 

at a time t = 0 in three-dimensional Euclidean space with its boundary afl 

(see’Fig. 2-l). The? union of fro and its boundary aR is the complete region 

(occ,upied by a bodg at time t = 0) and is denoted ‘by ‘. . .‘, ,, 

wher..e U denotes tge union of twd’iets. Thus, in Fig. 2- 1, ?? 1 denotes the ur]irJn 

of R and its boundary an,. Note that the region f12 has two boundaries: onca 
1 

external boundary a!Q and one inter&l (the interface) boundary 852 1. 

: 0 
F 

1mpac.t Poil;t 

Fig. 2-‘1 - A Three-Dimensional Region at t = 0 .’ 

I 
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Suppose that we ark given, at time t = 0, the state of the ‘fluid (or solid) 

occupying the region G ! o, the external forces acting on the boundary, and the 

boundary conditions. W e are then required to determine the’state of the fluid 

and the shape of the region at a subsequent time, t = T. Since we plan to 

analyze the impact point and the surrounding region, Q l, separated from the 

remaining region, it is  convenient to consider two different fluids (or materials) 

occupying two different portions, Q  1 and 02, of no; that is  

n 
0 

= a1 u n2* a1 = s ll u an, 

The surface 801 is  the material interface of the two regions, and it moves, 

as time advances, in such a manner that the pressure (or stresses) and velo- 

c ity  components are continuous. 

2.1 EULER ANG LAGRANGE DESCRIPTIONS 

There are two basic descriptions well known in continuum mechanics 

with respect to which the governing equations can be derived and computations 

can be carr ied out. In the Lagrange description, mostly used.in solid and 

structural problems, a coordinate system is  fixed in the body or configuration 

a0 to be studied. The deformation of the projectile-target configuration is  

then measured with respect to this deformed configuration. Consequently, 

the positions of the boundary anand of the material interface aS21 are auto- 

matically determined. The description also permits the use of constitutive 

relations for the material in which the stress history of each portion of the 

body is  taken into account. However, the Lagrange description is  totally 

unsatisfactory for calculating a flow in which turbulence develops or in which 

new material interfaces develop. In this case the nodal points of the mesh 

will attempt to follow the motion and the material particles which were initially  

adjacent to each other in a0 no longer remain so as the turbulence develops. 

In Eulerian description, mostly used in fluid mechanic problems, the 

coordinate system is  fixed in the space rather than in the body or configura- 

tion, and the calculations follow the material point that happens to be in a 

2-2 



given locat ion at that particular time.. In this case the ‘large distortions do 

not cause any problems, however, more than one ,material cannot be trcaterl 

accurately. The curves, approximating 89 and X21 move with the body and 

therefore create’ irregular, time-dependent boundary zones in the fixed 

Eulerian mesh. 

, -, 
2.2 COUPLED EULERIAN-LAG,RANGIAN DE&RIPTION 

’ Obviously, neither Lagrange description nor Eulerian desc:ript-ion alone ) 

is ideally suited for the analysis of impact p’roblems. It is both natural 

and desirable to combine the use,of, Eulerian and Lagrang,ian tnocles depending 

on whether the material is in a fluid state (Eulerian nlode) or solid state 

( Lag randian mode). In doing so, there will be a great deal of flexibility in 

approximating tbe~.problen~, thus *enhancing the solution process regarding 

accuracy and computational efficiency. The idea -is very skmilar to t.he well 

known substructurpg technique, but now with different descriptions (or modes) 

used in various regions. More specifically, in analyzing the impact problem 

of strut tural components, the exikting NASTRAN program (in Lagrangian 

mode) can be used to advantage for the structure part, while an Eulerian 

description is neczssary for the impact point ar@ its vicinity. In the following, 

we discuss how to couple an Eulerian mode with’a Lagrangian mode, in partjc- 

ular? the NASTRAN program. ; 
‘, 

Conceptually, the coupling of Eulerian and Lagrangian modes can br: a(:- m 
complished throug’k the use of a Coupled Eulerian-Lagrangian Code (GEL), both 

involving velocities, v, as unknowns [ 251. Furthermore, if it is desirable to 

use also the NASTRAN program with displacement, u, as unknowns, another 

coupling of the Lagrange mode with the NASTRAJJ program (Cm) must also be 

considered. Figure 2-2 shows a configuration consisting of these different 

descriptions. In the figure, the dotted lines represent the interfaces between 

different modes. The interfaces belong to the Lagrangian mode and are to be 

adjusted as time advances. Therefore, the coupling of an Eulerian mode with 

the NASTRAN mode is to be accomplished through two steps, .i.e., the CEL and 

CLN codes. 

2-3 
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E - L  In te r  E - L  Interface 

L -N  Intcbrface 

Fig. 2 -2  - A  Typical  Conf igura t ion  to b e  Ana lyzed  Us ing  
Var ious  Descr ip t ions 

T h e  bas ic  i dea  of the C E L  formulat i .on is to approx imate  a  conf igurat ion 

by  the combina t ion  of Eu le r ian  a n d  L a g r a n g i a n  subreg ions ,  wi th the b o u n d a r y  

a n d  inter faces descr ibed  by  L a g r a n g i a n  l ines. T h e  Eu le r ian  m o d e  wil l  con-  

sequent ly  h a v e  its b o u n d a r y  p rescr ibed  by  the L a g r a n g i a n  calculat ions.  Thus  

the Eu le r ian  calculat ion reduces  to o n e  b a s e d  o n  a  f ixed ,m e s h  but  hav ing  a  

p rescr ibed  mov ing  b o u n d a r y  to reflect the coup l ing  effects. 

2 -4  
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Consequently, the calculations that are made at eagh time step will involve 

three parts: Lagrangian calculations, Eulerian calculations, and a calculation 

which couples the Eulerian and Lagrangian modes by keeping track of the 

moving interfaces and the matching of pressure, velocities, etc., along this 

interface. Suppose that we know the solution of field variables (energy, density, 

velocities, etc.) at the n 
th time step, tn, and wish to compute the s,olution at 

ntl the next time step, t . Since we know the position of the Lagrangian mesh, 

Ln, I2 and the EulerianG’mesh, En, with, its boundary subject to move, the calcu- 

lations for the next time step can proceed in the following way. 

I .@ 1 

The first calcuqation uses the known (t = tn) state of’the Lagringian region 

and the pressure acting on its boundary to solve th$:equations in Lagrangian 

desc ribtion. The sofition gives us the t = t ntl :. sta$e in this region and also a 
ntl new mesh position, LJ . I.!. 1 

The boundary of the Eulerian rbgion is then updated, using results from 
Lntl ntl 

ii 
, and computation is performed to seek for the t state of the fluid in 

the region E. 
‘. 

This i! considered as the Eulerian phase of the CEL calculation. 
‘. 

11%. ,i e.., 

Having determined the t ntl st(ete of the Eulerian region, the second phase 

of cougling is to detelmine the pressure to act on fh,e boundary of-the Lagrange 

region L n-t-1 . We ha<e thus advanceh all of the field variables and grid positions 

to their values at thesnext time step, which completes one basic cycle of the CEL 

calculations . 
B. 

Similar logic and procedures can be followed for the coupling of L(v) with 

NASTRAN. Herein, the conversion between velocities and displacements can be 

done through integration in time. Another consideration is the generation or 

suppression of nodal unknowns on the interface, which can be accomplished using ’ 

the approximating polynomials. a. 

Another possible way is to couple the Eulerian mode with NASTRAN directly 

*(CEN) as shown in Fig. 2-3 on the following page. In this case, no formulation for 

4 
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the L(v) region is necessary, but the coupling must be done through the E-N 

interface. This is probably somewhat more complicated because the couphg 
involves simultaneously two kinds of descriptions in terms of different field 
: 
variables . However, in light of the possible savings in computational aspect,,, 
this: approach is also worth investigating, 

. . :c fL : I.. : 

t- 

Fig. 2  -3 - Coupling of Eulerian Mode with NASTRAN 

2.3 LOCAL REPRESENTATION OF DYNAMICAL SYSTEMS UNDER AN 
ARBITRARY FRAME 

In order to construct a  code coupling the Eulerian-Lagrangian modes, 

it would be more convenient if the field equations are presented in their local . . . 
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form under an arbitrary frame of reference. More specifically, let x = (xl, 

x2’ 3 x ) be a Cartesian coordinate system ,moving with a certain velocity rela- 

tive to the motion of the physical field, and let X = (xl, X2, X3) be the refer- 

ence system. Then, the two coordinate systems can be related as 

x = x(X, t) 
Y -v ..: 

. . 0 
(2.11 

Whenwe know such a relation for every material particle in the medium, we 

say that the history of the motion is known at time t. We assume that the 

motion is continuous, single valued!:and that (2.1) can be inverted to give the 

initial, position or mgterial coordinates, 
iz, 

X. A necessary and sufficient condi- 

tion for the .inverse to exist is that the Jacobian should not vanish: 1 
’ v 

ax. 
.J= & #O,O<J<ob vt’0 

j 
a4 

(2.2) 

Let R denotes the velocity of .+ material element relative to the 5 system, 
d 

l.e., 

(2.3) 

where v- is t&e velocity of the material element, and g = ax/ik is the local time 
I:, 

rate of change of the 5 system. If ‘k represents a certa.in physical quantity 

satisfying a dynamicgl system, then%he total time derivative follows the equality 

., 
dF aF 
dt=at t (n, l V) F 

Clearly, when $ = 0, the systems z-,and ,X are idential, and.z 

Eulerian system; when. & z v,, on the other hand, it represents 

system. 
!; 

(2.4) 

represents the 

the, Lagrangian r 

’ 2-7 
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Following the implicit differentiation rule, the divergence of the local 

“rate of change of 5 system can be related to the Jacobian as 

V+= J/J 

thus, (2.3) yields 

Suppose now that there is a dynamic system with physical quantity F 

satisfying the equation 

dF 
dt Y’ = G (x t) 

In particular, the continuity equation in z system is readily obtained as 

8 + PV*X = 0 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Then,‘the dynamic system (2.7) can be deduced by applying (2.3), (2.6) and (2.8) 

into the following form: 

F tpFA t V ‘(QPF) = PG 

where 

.I A = J/J 

(2.9) 

It.is clear that the dynamic system (2.9) would reduce to the Eulcrian form 

when k = 0; and to the Lagrangian form when 2 = 0. - 

2-8 
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3. MECHANICS O F  HIGH VELOCITY IMPACT 

The high velocity impact of a?projectile with a solid target results in 

an extremely compl*ix phenomenon. A complete description of this problem ,:?, i-‘r, E 
would involve considerations of all phases in the’ theory of continuum me- 

chanic s  . This includes not only the compressible fluid flow, dynamics of I. 
elasticity and plasticity, but also other behaviors,‘fsuch as melting and solidi- 

fication, vaporizati& and condensation, and the k in’etics of phase change. 
$ 

4 z  
Several models have been proposed for the various stages of the high 

velocity impact problems (see, e.g., [lo], [ 13-161; [ 19-231). Two models 

corresponding to different stages, namely, the inviscid hydrodynamic model 

and a hydroelasto-viscoplastic model, are proposed and analyzed in this stucly. 

The following discusses the mechanics of high velocity impact. 
‘$2 

3.1 IMPACT PRoGms 
JL, 

‘(The analysis $ high velocity .projectile mechanics can be divided 

into two parts: (1) dy namic behavigr of the projectile and target during the 

penetration processiand (2) structural response &f the target after the pene- 

trati;n process is  completed. -1) f& 
b 0 
a 

During the short period of time in which the projectile contacts the 

target, a plane shock wave is  generated in the .projectile as well,.as .in the 

target. The pressure behind these shock fronts is  the largest pressure that 

exists throughout the entire impact process. Due to the high pressure the 

material strength of the target can be ignored, and the material can be 

assumed to behave essentially as an inviscid, compressible fluid;. The shock .; 

wave; generated ,in the projectile and target travel away from the interface 

(s’ee F ig. 3-l). If the projectile is  finite (in diameter), rarefaction waves will 

be ge:berated and transmitted toward the axis  of symmetry. 



_ _.- .-.. - -... ---.---I 
_... -_._ .-_ 

-- 
__.__ ___ ._ 

-- - .---. -.- .___ . . . . .- - _-- - 

- -- 

LMSC -I-IREC T& D390900 

.v 
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1 
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I+ D 

Shock Front in 
the Projectile 

Pressure Pulse 

Rarefaction Shock Front in 

Ejected Material 

L Pulse Propagation 

F ig. 3-l -  High Velocity Impact Process 

3-2. 
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,Formulation of rarefaction waves results in the ejection of target and 

projectile material particles. Moreover, the rar2action waves weaken the 

shock waves and change its plane shape to approximately spherical. The 

strength of the shock continues to decrease due to the spherical attenuation 

and additional rarefaction waves, and the influence of the material strength 

and the strain rate effects must be taken into account. 

3.2 kANKINE -HUC&NIOT RELA’8ONS 

:,: 
As aforementioned, the material can be considered as an inviscid, com- 

pressible fluid in the short period right after the impact. c The problem, in- 

eluding the geometric development of the impact shock, can then be treated 

as an unsteady, supersonic flow redembling a moving shock. 
2’ 

Assuming that the hemispherical shockwave profile is steady in time, 

the Rankine-Hugoniot relations relating the pressure, P, internal energy, C, 

and the density, p, behind the shock to the same quantities in front of the shoclc 

are applied. These’kquations express the conservation of ‘mass, momentum, 

and energy in termstiof the shock vslocity, vs, and particle veloc$y, v : 
P 

+J 

PO vs = p(vs - VP) I< I ‘:j 
I 1 _ 

(3.1) 

(3.2) 

[ 

2 V 
(E - co) - $% p, vs = PO vs 1 ‘_ (3.3) 

where the subscript o refers,to the initial (or undisturbed) valu,e.,s. The 

product p, vs is called the shock impedance. Using (3.1) and (3.2), (3.3) 

can be written as 
,.I .a 

E-E0 = 2 .L(Pip”)(t -i) (3.4) 
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S o l v i n g  fo r v s  a n d  v  fro m  (3 .1 ) a n d  (3 .2 ), w e  o b ta i n  

(3 .5 ,.,, 

T h e  i n i ti a l  p re s s u re , P  
0 ’ i s  g e n e ra l l y  v e ry  s m a l l  a n d  c a n  b e  n e g l e c te d  i n  

c b m p a ri s o n  w i th  P . If s h o c k  v e l o c i ty  a n d  p a fti c l e  v e l o c i ty  a re  k n o w n  a t a  

p o i n t o n  th e  s h o c k  fro n t, th e  p re s s u re  c a n  b e  c o m p u te d  u s i n g  (3 .2 ). O n e  

m o re  re l a ti o n  i s  n e e d e d  to  s o l v e  th e  fl o w  a c ro s s  a  s h o c k , n a m e l y , th e  e q u a - “I 

ti o n  o f s ta te ; a  s p e c i fi c  fo rm  o f th e  e q u a ti o n  o f s ta te  i s  g i v e n  i n  S u b s e c ti o n  ’ 

3 .4 . 

3 .3  B A S IC  E Q U A T IO N S  

A s  p o i n te d  o u t p re v i o u s l y , a n  .i n v i s c i d  h y d ro d y n a m i c  m o d e l  i s  a  g o o d  

a p p ro x i m a ti o n  i n  th e  e a rl y  s ta g e s  o f th e  h i g h  v e l o c i ty  i m p a c t w h e n  th e  p re s - 

s u re s  d e v e l o p e d  a re  ,m u c h  l a rg e r th a n  th e  s h e a r s tre n g th  o f th e  m a te ri a l . 

It c e a s e s  to  d e s c ri b e  th e  p h e n o m e n o n  a d e q u a te l y  i n  th e  l a te r s ta g e s  o f th e  

i m p a c t w h e n  th e  i n fl u e n c e  o f th e  s h e a ri n g  s tre n g th  c a n n o t b e  n e g l e c te d . 

T h e re fo re , th e  e l a s ti c , v i s c o u s  a n d  p l a s ti c  e ffe c ts  o f th e  m a te ri a l  ,m u s t b e  

i n c l u d e d . T h e  e q u a ti o n s  g o v e rn i n g  th e  d y n a m i c  b e h a v i o r o f e l a s to - 

v i s c o p l a s ti c  m a te ri a l s  a re  d e s c ri b e d  b e l o w . 

3 .3 .1  C o n s e rv a ti o n  E q u a ti o n s  

T h e  c o n s e rv a ti o n  o f m a s s , m o m e n tu m  a n d  e n e rg y  l e a d s  to  th e  fo l l o w i n g  

e q u a ti o n s  b y  l e tti n g  A  =  0  a n d  z  =  x  i n  E q . (2 .9 ): 

E + &  

i  

( p v i )  =  O  

~  ( P v i ) +  ~  ( P v j  v i )  =  ~  (a i j )  +  p fi  
j  j  

(3 .6 ) 

(3  -7 ) 

3  - 4  
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& (pe) t &  CPeVj) = & (Qij 
a+ 

Vi) + pfi vi + Ps - ~ 
\L j j i 

(3.8) 

where p is the ,density, vi is the velocity in the x.-direction, CJ.. is the stress 
1 1J 

tensor, fi is the body force per unit mass, e is the specific’total energy 

defined as . - .? 
G .A" 

e =,,t:t 1 vi v. i 
2 1 

I 
(3.9) 

. 
E  being the internat energy per unit mass, S ijs the rate of internal 

! 
spec-ific heat gener$tion per unit mass, and q. is the heat flux or the rate 0; 

I 
heat flow per unit area across the,surface in the?direction of its unit outward 

I, 
normal, n.. ? :.I I . 

1 
.',,j 

3.3.2 Hydrodynamic-Elasto-Viscoplastic Constitutive Relations 

8 When the medium under consideration is inviscid, there are no shearing 

stres,ses. The strilss tensor then ;becomes 

i: I.. c, 

z . II 0 =  ij - P  6.. 
‘3 

(3 .lO) 

wher,e P is the hydrostatic pressure that is independent of ori.entation, and 

dij is the Kroneqke? delta. In general, the stress tensor and the correspond- 

ing *rain rate ten&r are related&o their respective deviatoricctensors by 

the following formq 
\! $2. 

_I 

S = 0.. - 1. 
ij 11 2. okk ‘ij (3.11) 

d! . = d..- + d 
13 1J kk 6ij (3.12) 

where S. . is the deviatoric stress tensor, d.. is the strain rate tensor define:1 
‘J 13 

d = ij 
fir. 
PJ 

‘L 

(3.13) 
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and d!. is the deviatoric tensor of strain rate. 
1J 

The deviatoric stress tensor, 

S ij’ 
in turn, is related to the strain rate tensor d.. 

1J 
through another constitutivc 

equation. For linear elastic materials, the constitutive equation for stress 

and deformation rats is given by 

S 
ij = E.. 

1JkP dkl ; (3.14) 

where E 
ijkp 

is a fourth-order tensor of material parameters. If the stress 

components 0.. 
1J 

are symmetric, E.. 
1Jkf is also symmetric, i.e., E.. 

iJkk’ 
=E.. =.’ 

ijPk 
E.. Jifk’ 

etc. In general, there are 21 independent elastic constants. For ortho- 

tropic materials, the number of independent constants reduces to 9, and for 

isotropic materials it reduces to 2. The isotropic constitutive relation is 

given by 

S 
ij = 2p dij + Ad kk ‘ij 

where A and ~1 are the Lame’s (or viscous) constants. 

(3.15) 

Let us denote the mean of the principal components of stress by 

Q E- 1 
3 okk (3.16) 

The quantity Q is called the dynamic pressure. The rate of dynamic pres- 

sure dQ/dt may, in general, be decomposed into a thermodynamical reversible 

component dP/dt and a dissipative component dn/dt, i.e., 

dQ dP dn 
dt =dt+x- (3.17) 

In general, the rate at which the local thermodynamic equilibrium is attained 

is.much greater than the rate at which a disturbance can be propagated. It is 

then reasonably accurate to assume that the local thermodynamic equilibrium 

exists at each instant. Hence, the reversible rate of pressure, dP/dt, is not 

path-dependent, and its integral P follows the equation of state which can be 

expressed as a function of density p and internal energy E, i.e., 

P = P(P, E) 

3-6 
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The dissipative ‘component da/dt, on the other hand, is generally a path- 

dependent function related to the bulk viscosity and the rate of the change of 

volume. It characterizes the physical dissipative rate of dilatation. For 

isotropic materials, 

B = - (A + f /-L) dkk 

The coefficient of bulk viscosity is defined by 

/.L’ = (A t 5 p) = (P- Q)/dkk 

‘(3.19) 

(3.20) 

If the volumetric changes of the materials are elastic, ‘the changes of dynamic 

pressure is reversible which implies that dQ/dt E dP/dt. Then the path- 

independent nature of P yields 

Q = P = P(P, El (3.21) 

Noting that for incompressible materials (dkk = 0), Eq. (3.21) follows 

immediately . Equation (3.21) is also true for compressible fluids for which 

Condition (3.22), known as Stoke’s hypothesis, is a reasonable assumption for 

flow of monatomic gases; however, it is not valid for polyatomic gases or 

liquids, and distinction must be made between the mean stress Q and the 

thermodynamic pressure P. 

For high velocity impact problems, the thermodynamic pressure is very 

high, and as aforementioned, the dynamic response in the material can thus bc 

considered as an isentropic process. This implies that the material under 

high velocity impact can be assumed to possess the elastic changes in volume, 

and (3.21) follows. 

3-7 
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Unfortunately, thc3r.e does not exist a constitutive relation that describes 

all aspects (elastic, viscous and plastic) of mechanical behavior in a single 

expression; Constitutive relations of plasticity and viscoelasticity are essen- 

tially dynamical in nature. The constitutive relation in classical plasticity 

involves tensors of stress and rate of c&formation, and describes rigid, per- 

fectly plastic behavior. When elastic effects are to be considered in the 

analysis, this relation applies to the plastic- part of the rate of deformation 

tensor. Similarly, the constitutive equation for viscoelastic material involves 

stress, elastic rate of deformation and the rate of deformation of a viscous 

fluid. In both cases, the elastic component of the rate of deformation tensor 

is usually written as a function of stress rate. Although the stress tensor is 

objective (axiom of objectivity requires that if a stressed continuum performs 

a rigid body motion and the stress field is independent of time when referred 

to a coordinate system attached to and moving with the’material, the stress 

rate must vanish identically), the stress-rate tensor is not. Therefore, the 

stress rate da. ./dt should not occur in this form in the constitutive relation. ” 
11 

An objective tensor containing the stress rate must be defined. Several ob- 

jective tensors containing the stress rate can be constructed. One such tensor 

is due to Jaumann (see ] 251) and is given by 

4 
ok4 

dok4 = - t Ukm Wm4 - urn4 Wkm dt 

where 

(3.23) 

(3.24) 

The tensor Gk4 is called a stress flux. Other stress fluxes may be obtained 

by adding objective tensors such as +Okm dm4 to the right-hand side of (3.23): 

d”k4 
‘k4 = dt ’ omLVm,k ’ okmVm 4 , 

2 dak4 
k4 = dt - - omPvk,m - ukm V4,m 

(3.25) 

d”k4 
Gk4 = 7 - u m4 Vk, m - ukmV4,m ’ OkPvm,m 

3-8 
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The stress flux ^akm measures the rate of change of the stress components 

with respect to a rectangular Cartesian system that participates in the rota- 

tion of the material,-and 6.. 
11 

= 0 implies that the invariants of stress tensor 

are stationary. 

In general, the rate of deformation tensor d.. ‘can be split into tw,o part,s, 
1J 

i.e., 

d = dFj t dy ij (3.26) 

where dr yj is the elastic component and dyjp is the viscoplastic component of 
I‘ 

the deformation rate tensor. Here it is assumed that the medium is initially 

unstressed. For line$r elastic material, the elasti’c part de. is r:lated to S 
13 

by Eq. (3.14), and for‘ linear elastic-viscoplastic material de.’ 
ij 

is related to I 

the stress flux zij as” 
1J 

zi 
ij 

= c.. e’ 
r Jkf dkP 

. (3.27)’ 
. . 

in the elastic region. Here the coefficient matrix C.. lJkP depends on E. ljkP of 

Eq. (3.14). For isotropic material s+isfying constit’utive relation (3.15), Eq. 

(3.27) can be deducedr,further as 
a 

u 

3. 
dS.. ., 

1.i 
= ++simw S .,W mj - mJ im 

* = 2c( de.’ 
1J w 

(3.28) 

Plastic behavior is assumed to take place when a certain function of 

deviatoric stresses vanishes. This function is called the yield function. The 

yield function is constructed based on the following assumptions: 

1. The yield surface is convex (or smooth). 

2. The plastic component of the deformation rate tensor 
is normal to the yield $urface at a smooth point. ., 

I 

!’ 
13-9 
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If a yield condition ie given by 

A' 
F(Qij'K) = f(a. ., K) - Y(K) = 0 

‘3 
(3.29) 

with F < 0 denoting the purely elastic region, then the deformation rate tensor 

will be a function of positive values of f. Here Y is a yield stress and K is a Lo 
history dependent hardening (or softening) parameter. We now introduce the 1,, 

notion of “plastic potentislyl#(oij) defined as 

d VP 
ij 

= y < d (f/fo) ’ E 
ij 

(3.30) ’ 

where y is a fluidity parameter which may depend on time, invariant s of the 

rate of deformation, etc., and f. denotes a reference value of f that makes the 

expression non-dimensional. To ensure no viscoplastic flow below the yield 

limit we write 

A sufficiently general expression for $ (f/fo) is given by a power law 

dJ MO) = (f/f,P (3.32) 

Various yield criteria and plastic potentials can be introduced dependinq 

on the material under study. For isotropic materials, for example, there arcA 

two well-known yield criteria: the Tresca yield criterion assumes that the 

yielding occurs when the greatest difference between any pair of the principal 

stresses 0 1’ o2 and CF 3’ reaches a specific value, Y. Usually, Y is taken to be 

the yield stress in uniaxial tension. The von Mises yield criterion for plastic 

yield is 

(0 1 - a212 + 032 - 03)2 •t (OS .- CT1 )2 = 2 Y2 

or expressing in terms of o.., we have 
1J 

3-10 
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$1 - Q2 + (422 - a  ‘2 
13)2 + (a33cA- a11)2 t 6  (at; t al3 + ag3) AL 2 Y2 (3.33) - 

In what follows we shall take a more&general yield function that is defined in 

terms of stress invariants as 

. . f(aij) = f(J1, J2, J3) (3.34). 

where Jl, J2 and J3 are the stress invariants, 
\ .J : 

J1 = a..., J2 = z ’ S- S 
‘:l 

11. ij ji’ 
J3 = “g S.. S. S 

1~ Jk ki 

Clearly, von Mises yield criterion, Eq. (3.33), is a special case of Eq. (3.29), 

where ^F is given by ; ‘I!, 

‘,b Z(aij) = 
d 

3 - Y --= $(Sij) 
‘. j 

where Y is the uniaxiai yield stress. I; 

ij 
For a special caie in which $ = $ and Y is independent ,_” 

from Fq. (3.30) ‘. 

‘t 
d”p 

1J 
~ r(f/f,)” ‘~/‘~ij = y(f/fo)n 8f/8Sij 

.,. 
and for n = t 1, and f giLben by Eq. (3.35), this reduce% to 

d?' = ;L 
1J 

2 (Y/fo)sij 

(3.35) 

of 0. .) we have 
1J 

(3.36) 

After normalizing the yield surface by the von Mises yield stress, i.e., letting 

F  = E/Y, a more general form analogous to (3.36) follows from (3.35), namely 
8 

dVP ’ 
ij = Y I Sij/ (3.37) 

where 
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and the plastic potential 

0 for F i 0 
@(F) = 

@(Sij) for F > 0 

Thus, the stress flux for this case becomes upon substituting (3.37) into 

(3.28), while noting dvp = 0, 
Ick 

: 
. 

ij 
= 21J.(dij - Y I Sij/~ ) (3.38) 

Here, the material parameter y and the plastic potential @ have to be found 

from experiments . For example, y and@(F) of 2024-T3 aluminum are readily 
6 

obtained as 
e 

@ = eFie - 1 for 0 < # 
0 

Q, 
e. + 1 

= ait-7 (F - Fo) for@>Go 

and y = 0.15 p see-‘, where a0 = 106, F. = 8 log(@o t l), and 0 is a new 

material function which depends on the generalized plastic strain E: as 
P 

B’(E~) = 0.0003 t 0.0214 cP - 0.0243 e; for cP - < 0.4 

= 0.005 for EP > 0.4 

Here, the generalized plastic strain is 

eP = j dndt 
0 

I 

3-12 
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i 

3.3.3 Equation. of State w 

Since the governing equations contain the pressure (implicitly, in oij), 

a constitutive relation must be used relating the pressure to the density and 

the specific internal energy. This particular constitutive relation is well 

known as the equation of state. For high velocity impact of solid bodies, 

two e,quations of state are well known. One of these is developed- by Tillotson 

[27] and the other is developed by Osborne and hi: associates at Los Alamos 
’ 

Scientific Laboratory. 
u 

Tillotson’s Equation of State: Tillotson’s equation of state -(for either 

compression or exptision regions).is given by ;I!.. 

P  = n (c,;p) t A/J t B$ t>: 
.I 

(3.39a) 

forp>powithO<$<Es, and Y 

‘.. 
bep . + Ap ,-P U/r/.-1) 

(1 + E/E0 77% I 

e-w/,-l)2 (3.39h) 

B 

for P < P, with E > i 
S ’ 

where Q 

P =rg-1, r) = P/p,s PO = initial density 3 

F ._ 

and a, b, A, B and e, are parameters (constant) which depend on t,he material, 

and c s is the sublimation energy. ,Values of these parameters for some 

materials are given in Table 3 - 1. 
c 

‘2 

‘: 
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Table 3-l 

VALUES OF THE PARAMETERS IN TILLOTSON’S EQUATION 

Parameter 

p, (gm/cma) 
a 

b 

A (mb) 

B (mb) 

a 

P 

e o(mb-cm3/gm) 

rs(mb-cm3/gml 

t 

1 

Aluminum Iron 

2.702 7.86 

0.5 0.5 

1.63 1.5 

0.752 1.28 

0.65 1.05 

5.0 5.0 

5.0 5.0 

0.05 0.095 

0.03 0.0244 

I Copper 

8.9 - 

0.5 

1.5 

1.39 

1.1 

5.0 

5.0 

0.325 

0.0138 

. 

Lead --- -1 

11.34 

0.4 

2.4 

0.466 

0.0026 

10.0 

2.0 

0.02 

0.0026 

Note that (3.39) is not defined for certain states, for example when p < p 0 
with E < l s, and p > p, with E > ‘cs. Some investigators have used some 

kind of average of the pressures given by (3.39a) and (3.39b) for these states. 

At this writing Tillotson’s equation is not used in the calculations. 

Los Alamos Equation of State: Another equation of state that is widely 

employed in high velocity impact calculations was derived at Los Alamos 

Scientific Laboratory. The equation is given by 

I [Ac( t 62 (B t &)]/(a? t qo), /J 2 0 

WE,P) = 
[pAl t 6; (B. t pB1 t b&)]/(& t (PO), ~1 <, 0 

(3.40) 

where 

's = PO/P, cc = P/P, - 1 

A = A1 tpA2, B = Bo+p(B1 +pB2) 

C =co+pcl, 2 =PE 

3-14 



I 
r: 

: LMSC-HREG TR D390900 

and Al, A2.Bo,,Bl,BZ, Co, Cl and $o are constants that depend on the material. 

Values of these parameters for plexiglas, graphite, aluminum, iron, .copper 

and lead are given in Table 3.-2. i 

Table 3-2 

VALUES OF THE PARAMETERS IN THE L@ ALAMOS EQUATION 
OF STATE FOR VARIOUS MATERIALS 

Parameter Plexiglas 

1.18 .I 

0.006i99 

0.015491 

0.1-1736 

0.056p9 

0.50504 

0.5575 

0.6151 

0.100 

Graphite Aluminum 

2.25 si 2.702 

0.1608 

0.1619 

0.8866 

0.5 140 

1.4377 

0.5398 

0.5960 

0.500 

1.1867 

0.763 

3.4448 

1.5451 

0.9643 

0.43382 

0.54873 

1.5 

1 

Iron 

7.86 

7,; 78 

31.18 

9.591 

15.676 

4.634 

0.3984 

0.5306 

9.00 
, 

Copper Lead 

8.9 11.34 

4.9578 1.4 844 

3.6884 1.6765 

7.4727 .’ 8.7317 

11.519 0.96473 

5.5251 - 2.6695 

0.39493 0.27732 

0.52883 0.43079 

3.60 3.300 

The parameters are fitted for gram-centimeter-microsecond system of units. 

A comparison of the pressures computed from Tillotson’s equation of 

state and Los Alamos equation of itate is made for aluminum (p, = 2.702 

gm/cm3) at e = 0.5 mb-cm3/gm (see Fig. 3-2). The equation of state which 

closely agrees with”the experimental data for a given material will be used. 

Hugoniot Equation of State: As mentioned earlier, we need to add an 

equation of state to the Rankine-Hugoniot equations (3.1) through (3.3). For 

instance, Eq. (3.40) may be used and with the internal energy E eliminated 

using the Rankine-Hugoniot 

[ 
F2(6) - 

[ 
E2M4 - 

jump r’&lation (3.4) to obtain 

(3.41) 
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8.f 

7.t 

c k =f ul 
z 4.0 

6 

3.0 

2.0 

0.0 

Expan s ion R t:g i on 
l + 

Til.lotson’s 7 

Compressi on 

1.0 L.0 
Ratio of Densit its. (),//I 1) 

3.0 

Fig. 3-2 -Variation of Pressure vs Rati, ) c)i Dcnsiti(>s Tar Aluminum 

(PO = 2.702, c .-. 0.5) 
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where 6 = P,/P, and 
a . 

El@) = (l”L’.& [(l - 6) 
1 (Co - Cl) 6 t Cl‘ ) .I -ii 

. 
E3W ‘= Al (1 - 6) , 

F1 = El& F2 = E26 - B2(l - 6)3/Z 

_- Fq = E34 t A2 (1 - 6)2 

.c 

and the constants A l,A2,: .;‘, are the same as those appearing in (3.40). 

3.4 INITIAL AND BOUNDARY CO’NDITIONS 

To complete the description of the high velocity impi’ct problem, we 

must include the initial and‘boundary conditions, which, in general, are 

time dependent. 1 2 ,, 

<_ 

Initial Conditions: At time t = 0 values of all the dependent variables 

(p,,~, E, P,g) must be specified at the nodal po.ints of the mesh. It is not essen- 

tial to specify all these quantities at the same set of nodal points. For 

instance, in the analysis of’target alone, the velocities, density and specific 

internal energy are.specifizd at one set of points, and pressure is specified 

at a different set of’points. ii- 
.t .’ ‘i 

Boundary Conditions: Depending on the type of the boundary (e.g., 

rigid boundary, free surface, interface, plane of symmetry, etc.), there 

are different kinds of boundary conditions in a problem. At’ a rigid boundary 

the normal component of the’ particle velocity must coincide with the normal 
,.r 

component of the velocity of the rigid boundary. For a fixed’(in time) bound- 

ary, the normal component of the particle velocity must be zero at that 

boundary. A plane of symmetry can be interpreted as a fixed boundary. 

‘,‘,, 3-17 
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On a free surface, the total stress must vanish. At an interface (and at a 

contact discontinuity) the total stress and the normal component of particle 

velocity must be continuous, and the density, internal energy and the, tan- 

gential component of particle velocity may be discontinuous (jumps). Across 

moving shock fronts tne Rankine-Hugoniot relations (3.1) through (3.3) must 

be satisfied. 

* 

3-18 ‘P 
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4. BASIC FINITE ELEMENT PRjbCE?URES 
L. 

In this sectiqn, we summarize the basic fi&te element procedures as 
2 

applied to solve the impact problem as governed by a set of hydrodynamic 
> 

and, constitutive equations. The formulations are based on the conventional 

methods of weighted residuals, i.e., the Galerkin and least squares approches. 

First, the governing equations to be solved are presented. Finite element 

analogues for these equations area then constructed via the Galerkin and least 

squares appr0ache.s. In numerical aspects, the isoparametric &ements together 

with numericali’-integration are described, and cinally, two titie-marching 

schemes are presented. The procedures discussed here serve,, as a reference 

for the development of an improved model descr.ibed in the next section. Also, 

the numerical results so computeh provide data’for comparison purposes. 

These methods have been found td be quite effective for solving: problems 

governed by elliptik and parabolic equations. 
‘i 

However, for hyperbolic system 

of equations, nume’rical instabilities w’ere encountered, indicating conventional 

methods of weighted residuals cagnot be directly applied to solve the impact 

problem. For these reasons, an,jmproved scheie based on the theorem of 

weak solution was ‘developed, which is described-in the next section. 
Y , 
6 

4.1 GOVERNING +UATIONS '1 : 

With the internal heat gener’ation and heat flux set equal to zero, the set 

of equations conserving mass, m?mentuti; and energy becomes 
$ 

:i 
& (PI + & (Pvi) = .O 

i : 

~ (PVi) + ~ (Pvj"vi) = ~ (aij) + Pfi 
j j 

(4.1) 

(4.2) 
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‘+ be) + ~ (pvie) = pi (UjiVj’ + pfi vi 
i 

For the purpose of numerical computations, we denote 
P 

pi E vi, pe E E, pfi .z Fi 

0, avk av 1 av, i3v3 
K = F"Zq + ax, 

and rewrite (4.1) through (4.3 ) in an alternate form 

?e at t vi Y$- (64 + OP = 0 
i 

& (Vj) t Vi a%. fvj) + QVj = ~(“ji) + Fj 
1 i 

$- (El + vi & (E) t @E = & (ojiVj)+ FiVi 
i i 

(4.3) 

(4.4) ‘% 

(4.5) 

(4.6 1 

(4.7) 

The stress tensor, 0,. . , 
IJ 

can be expressed as the sum of a deviatoric 

stress and a dynamic pressure, namely, 

1 
u.. = s.. t - 0 

13 1J 3 kk6ij 
(4.8) 

For high velocity impact problems, the first invariant of stress tensor is ex 

pressed by 

y&= -3P 

4-2 
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-.: 2, 

.I 
.’ 

), ?- 
..:‘.,b . ..I . . ..“_ . ,T! I:- 1 ,, .- ..-. * 

: ,- ,Y. .:. .,.- ,. -<a. . . .-, =  
, : ‘,: .‘;.,, .- s 

,T& &&at.o$& s$ress is, in turn, governed by a constitutive equation in the 
. 

form 

as. . 
79 : .+vk$i = c e’ 

i jkl dkP - ‘im “mj ’ ‘mj Wim 
(4.9a) 

k 

For isotropic materials satisfying von Mises criterion, the above equa- 

tion reduces to 
.p’- 

‘=%w *..., .‘L . . ‘- -. . 

= 2 /A 
.; 1 I3 

- Sim urnj t Smj +m (4.9b) 

. . - =. * . 8.6 ‘.. . . c *, *- ,L .I,. I je * . . . ..-. V& .;...a 
-- ‘* ;‘I : . II l *. ). 

? c...: 

61. 
13 

= d. . - $ dkk 6ij ‘. 
. 1J 

av. 8v. 
fJ 

ij 
= + 

‘( ) 
&-- 

j 
d- i 

G(F) = PlAstic potential with o(F) = 0 for F s 0 and 

,. 
',x." ; 

*.' < ., ,. '-i J2 = 1 ‘mn ‘nm 
” 14 
‘.; E ; ‘:_f &. : y’ ., y 

-‘-“,. 
- 

elast)lciviscoplastic effects the’ constitutive equations-and 

conservation equations must .be solved simultaneously with the aid of an equ;! - 

tion of state 

- P = P(P,c) .’ 
(4.10) 
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4.2 FINITE E’LEMENT ANALOGUE BY METHODS OF WEIGHTED RESIDUALS 

The finite element formulation posed herein is basid on the conservation 

equations (4.5) through (4.?), the constitutive equations (4.9) arid the Los Alamos 

equation of state. In principle, five conservation equations and nine constitutive 

equations must be solved simtiltaneously by the proposed finite element method. 

This approach, however, is not practical because it requires an extremely large 

storage space and possibly a large amount of computation time. Therefore, an 

alternative approach is introduced to solve each set of equations separately but 

with certain iteration procedur;?s to couple the two systems of equations. o 

In this subsection, we discuss two finite element models constructed’%vill~ 

methods of weighted residuals, I.e;, theeGalerkin approach and the least sqlia res 

approach. Tlfe investigations were conducted to determine whether the finite 

element concept with conventional methods of weighted residuals can be applied 

to solve the high velocity impact problem, which is governed by a system of 

hyperbolic equations. Also they serve the purposes of program debugging and 

the development of a number of subprograms which are subsequently used in 

an improved finite element model. The developed procedures have been applied 

to solve a number of heat transfer problems, and impact problems as well. The 

findings from these numerical computations are presented and discussed in 

Section 6. 

4.2.1 The Galerkin Approach 

Consider a nonlinear boundary value problem of the form 

,/I/y (A) = r (4.11) 

whe reJv. 1s a nonlinear (differential) matrix operator, & is the column vector 

of unknowns, and x is a column vector of the known quantities. Writing the 

conservation equations in this form, we have 

4-4 
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? 
. . 

Jf, l&i = (4. i2). 
.’ . 

0 “’ 
,!’ 

& (aij) + F3 
i 

r = (4.13) 

& ( (5 v ) + F.V. 
i 

ij j I ‘O i i i 

SimFlarily, the conbtitutive Eq. (4&a) can be written in the same form as ’ , B >a. . .ID e 

and 
3 
. : 

r..= c.. 
11 lJM 

d; - Si&ujrn t,Simtii;. 

& 

(4.15 j 

5 w 
6 8 . 
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In the finite element/Galerkin method, approximations to p, Vi, E, and 

Sij are sought in the form 

P = Ns P, 

x = Ns -vs 
t s = 1,2, .,.,n (4.16) 

E = Ns Es 

S = Ns& 
: 

r2: 

wherein n is the total number of unknowns, Ns are the shape (or trail)“func- 

tions in space, p,, ys, Es, andz,, are the unknown time-dependent parameters 

to be determined; here ,V (tilda number) represents the vector V = ]Vil, 

i = 1, 2, 3 and g represents the deviatoric stress tensor 5 = [Syj], i, j = 1,2. 3. 

(Note: The stress tensor is computed using the algebraic equation 4.6). In 

(4.16), we have assumed for simplicity and for computational convenience, the 

same type (linear, quadratic, or cubic) of approximation for all the variables. 

Upon substitution and applying the Galerkin technique, we obtain for the 

conservation equations 

(4.17) 

(4.18) 

(4.19) 

for r, s = 1, 2, . . . , n, where the superposed dot indicates partial differentiation 

with respect to time, t, and 

A - NrNS dV, Br; = QN N 9’v.N 
aNS 

rs - rs 1rTGT dY 
1 

J 

N 

Y 

4-G 
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and 

for ‘J J *= 1,2and3. The last two expressions in alternate forms.can be re- 

Dr = &- (‘xi vj) t F. v. dV 
i .1 1 

written using Gree.n’s theorem, 
I 

f 

8N 
c - rj - - -& oji t FjNr 

S” 
i’ 

D = 4 v. dV r , 

s 
J 

Equat&ns (4.17) through (4.19) are the finite element analog of the conservation 

equations. 
1 I 

. . 

The finite element analog for the deviatoric stresses can be obtained in 

the similar way. Fo% instance, with Eq. (4.9b), we have 
rp 

for r, s = 1, 2, . . . ,n., Here 

A = rs f 
NrNs dY 

Y 

.d 

4-7 
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B = 
. rs 

8N 
NrNstviNr-$- d+,’ i=1,2,3, 

i 1 

Qk = J I Nr ?P d’h - skm timm t smp wkm 
I 

k, 1, m = 1, 2, 3 

v P= 

If the viscoplastic term is retained on the right hand side, then 

B 
/ 

vi N rod*, 
* 

rs = 
-Ff 

and 

3 - Sk, wmP +. Smp wkm 

The conservation equations and constitutive equations thus formulated will 

be solved iteratively. The iterative procedures start with solution at previous 

time step and proceed as follows: 

1. Solve the conservation equations, Eqs. (4.17) through (4.19), to predict 
the field variables (p, E, u, v, and w) for next time step. 

2. Compute pressure using appropriate equation of state. 

3. Solve the constitutive equations (4.20) to predict the deviatoric stresses 
for the same time step. 

4. Use results obtained in Steps 2 and 3 and update the stress field. 

5. The above steps are to be repeated until a prescribed convergence 
criterion is met. If so, proceed to next time step. 

4-8 ,.‘B 
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4.2.2 The ,Least Squares Approach 

The possibility of utilizing the concept of least squares to both space 

and time has also been explored. To do this we write the equations to be 

solved in a symbolic form 

QtAQ=L (4.21) 
ES 

in which Q represents the unknown function considered, L’ denotes the corre- 

sponding terms on the right-hand side, and A is defined as 

A=@ tVk& 

k 

For a one-step schenle, the solution can be assumed in the following form 

Q ‘= Ni (At-t)Q? 
1 

+ t Q 
i 

In+‘) /At 
I 

(4.22) 

(4.23) 

Again, N.+s represent the space dependent shape functions, Q!“’ 

and t(n’l’L, 

and Q. (n ’ ‘) 

are the inknown at nodal points for time equal to t (n) 
1 

respectively, 

with 0 < t < At. - - 

Upon substituting Eq. (4.23) into (4.21) withAi denoting A(Ni), the residual 

is obtained as 

Rx& _ C Ni t (At -t) Ai 1 Q. (n) + 1 & ( Ni t t Ai) Qitntl) - L 

from which the weighting function can be obtained by evaluating the partial 
b-+1) derivatives of R with respect to each Q. . 
1 

Finally, the system of algebraic 

equations is obtained by setting 

ff 
+$) R dV dt =O (4.24) 
aQ. 

tv l 
_ 

4-9 
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’ from which a recurrence formula can be derived by carrying out the integration 

’ with respect to time explicitly. 

, For instance, if Ai and L are both assumed to be constant .in the time 
b+l) interval and independent of the unknowns Qi . Then the weighting function is 

= & (Ni t t Ai) 

The corresponding system of algebraic equations, with the time integration 
4 

carried out, finally becomes 

K.. Q. 
Y J 

= Li t Kik Qktn) (4.25) 

where 

v 
Ni Nj + 

Nj + Aj Ni) At + (hi nj) At2 

2 3 

or, equivalently, 
Kij AQj = L i 

in which AQj is the increment of the unknown function at node j, 

AQ. 
J 

= Q tntl) _ Q 

j 
(n) 

j 

I dV 

4.3 ISOPARAMETRIC ELEMENTS AND NUMERICAL INTEGRATION 

(4.25a) 

(2.24) 

As is seen, the use of finite elements discretizes a continuum problem 

and establishes a system of algebraic equations, whose coefficients are ex- 

pressed in terms of the products of element shape functions. The choice of 

4-10 



LMS’C-HREC TR D390900 

_’ 

43 

element type in finite,element analysis is usually dictated by considerations 

of accuracy, computational efficiency, and the specific problem under study. 

Clough [28] h as shown that for three-dimensional finite element analysis, the 

11 serendipity” elements with isoparametric formulation are superior to other 

solid elemen s with respect to the above considerations especially in the 

present pro Ii em where an adequate representation of the geometry is essential. 

The term f’isoparametr’ic I1 means that the same shape functions’tire used to 

define both the geometry and the unknown functio:n. In the present ,study, use 
*’ 

will *be made of the linear, quadratic, and cubic elements of the,‘,’ serendipity” 

family. After performing certain’transformation (mapping), these brick-type 

elements will deform to yield curved surfaces. The following is a description 

of these elements. ‘. 

In the “serendipity1 brick element, most of the nodes are located on ex- 

te rnal edges . In fact, the linear, quadratic, and cubic elements contain no 

internal nodes at all. The corresponding shape functions are listed below 

using the notation of Zienkiewicz [29] . 

J 

where (6, qI, 5) are the local coordinates and (ci, +li, ci) denote the coordi - 

nates of nodal points of the cube (see Fig. 4-l). 

Linear Element (8 nodes) 

The shape functions in this case are define’d by 

.d wNN. = 1 i (1 + S,)U + rlo)(l + 50)P i=1,2 ,...., 8 
_: ‘. 2;. 

4-11 
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-1, -1) 6, 1, -1) 
a. L-hear Element 

(-1, -1, 1) A 0 w 

h. Quadratic Elenletnt 

(-1. 1,‘~1) 

1, -1) (1, 1, -1) 

C. Cubic Element 

Fig.4-1 - Locat.ion of Nodal Points in Th)rce-Dimensional Elements 
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Quadratic Element (20 nodes) 

For corner nodes 

N. =,; 
1 (1 + 5,)u + ?,W + 50)(Eo + ?Jo t 5 0 - 2) 

Typical mid-side node 

5,=0, Tj. 
1 

=Ll, ii =&I 

Ni =;(l - E2) (1 t To) (1 f 5,) 

Cubic Element (32 nodes) 

For corner nodes 

N. 
i = & (1 + 6 o)(l + llow + So) 

C 
9(C2+ r12+ G2) - 19 1 

Typical side node 

si =+, rji =+I, 5, =+1 

N. = 
1 

& (1 - E2)(1 f 95 o)(l + rl,w + 5,) 

Numerical Integration 

In finite element analysis, the matrices defining element properties, 
/ 

e.g., stsffness, etc., must be found. These will be of the form 

[Gk Y, z,] dxdydz (4.26) 

in which the expression G depends on the equation being solved and the shape 

functions Ni and/or their derivatives with respect to the global coordinate 

4-13 
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system (x, y, 2). As is seen. earlier, the shape functions are written in the 

!ocal coordinates (5, T+ 5); therefore certain transformations must be per- 

. formed so that Eq; (4.26) can be evaluated in the local coordinate system. 
I. .- ., 

-First, the expression G(x, y, z), which_i.~~olves shape functions Ni and , 
a.their derivatives in the global coordinate system (x, y, z) must be transformed 

into those in the local coordinate system (y, n, i?). When isoparametric formu- 

lation is used, the relationship between global coordinates and local coordinates 

is defined by 

and 

y = Ni (6,q,5) yi (sum on i) 

z = Ni Oh-& zi 

(4.27) 

in which Ni are the shape functions as defined before and xi, y;, zi represent 

the global nodal coordinates. By this transformation, the originally right 

prism in the (5, r), 5) space will become distorted in the (x, y, z) space. Now, 

since the shape functions are defined locally in finite element analysis, no 

transformation is necessary. However, the derivatives of shape functions 

with respect to (x,y, z) must be transformed into the local coordinate system. 

This can be done as follows. 

Using the chain rule, one has 

aNi 

ac 

aNi 

a, 

aN. 

\ at 

-ax !!I aZ 
e- a!t a5 

ax 2-Y aZ 
a, a, a, 

ax !Y aZ -- 
x a< at; 

a Ni 

ax 

a N. 
1 

aY 

aNi 

aZ 

= J I 1 

4- 14 
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. , 
. 

where J is the Jacobian matrix. Therefore, nne Obtains 1. 1 
a N. 

a: 

aN. 

I ayl 

BN. 1 
aZ 

=: ;I I .J -1 

TheJacobian matnix J and its inverse, in turn, 
I I 

can be determined from 

(4.28). More expli$tly, the Jaco:b/an matrix becomes ! &) 
I 

(4.28) , aN1 aN,y 

. ‘ll atJ 
a5$ --*- 

. . 
*. 

and jbts inverse can he determined,&bsequently. 
‘1 *e 

Secondly, a tlansformation f,or the volume element must a so be done, 1 
.# 

that is ‘.Y:. .’ 

9 dxdydz = dqe J 
I I 

de drldr, (4.29) 
** 

’ By combining (4.28) a.nd (4.2$), one finally obtains, in place of (4.26), 

the f&lowing integral form 
. 

I 

Y 

, 

4--15 hil 
$ 

D 

8 

. 



LMSC-HREC TR D390900 

Thus the integration ie carried out within the right prism and not in the 

complicated distorted shape. 

While the limits of the integration are simple in (4.30),unfortunately the 

explicit form of (c) is not. Therefore numerical integration usually has to be 
1 

resorted to. Essentially, (4.30) is approximated by the following form: i 

I-222 
1 

wiw w j ' m  

i=lj=lm=l [ ( 
nil l?j' 5, 

)J 
(4.30a) 

In the above, w., wj and w 
1 m are the weighting coefficients with G evaluated 

at the point (gi, qj, c,,). Herein, for. simplicity, the number of integrating 

points in each direction was assumed to be the same. The numerical scheme 

presently used is the Gaussian quadrature, of which the points for evaluating 

5 and hence the corresponding weights, are preselected to yield higher accu- 

racy with a fixed number of integration points (see Conte, [30]). Of course, 

within the isoparametric family, exact numerical Gaussian quadratures can 

be obtained if a sufficient number of points is used. 

The surface integrals can be expressed in a similar form 

I = 
ff 

[H(x, Y, d-j dS 

S 

(4.3 1) 

in which H(x, y, z) is obtained from the shape functions and/or their derivatives 

with respect to the global coordinate system (x, y, z) and S is a curved surface 

in space. Since the integrand is usually very complicated, expression (4.31) 

will be evaluated by numerical integration. 

First, the expression H(x, y, z) must be expressed in terms of the local 

coordinates (C,T), 5 ), analogous to the volume integrals, and to be evaluated 

on the appropriate surface. Second, a transformation for the area element 

4-16 



must be done so that the integration is performed on the surface defined by 

two of the local coordinates. For instance, the area element on a surface 

where 5 is constant can be written as 

dS = det[y] d$ dq 

in which c-1 J is the modified Jacobian matrix 

sidered. The matrix, in turn, is defined as 

(4.32) 

evaluated on the surface con- 

aZ 
a, 

with 

The corresponding surface integral, througn the above transformations, 

thus becomes 

(4.33) 

(4.34) 

Finally by using Gaussian quadrature, the surface integral is approximated 

by the following ‘summation 

(4.34a) 

in which H is evaluated at the Gaussian points (ci, T-J .), wi, w. are the corre- 
J J 

sponding weighting coefficients, and n denotes the total number of Gaussian 

points to be used in each direction. 
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4.4 TIME MARCHING. SCHEMES 

As is seen previously, the Galerkin approach results in a system of 

ordinary differential equations with respect to time (see Eqs. (.4.17) through 

(4.20)). These equations involve time derivatives of the primary conservative 

variables, p, Vi, E and S,. . , 
11 

thus certain scheme must be chosen to integrate 

the system of equations in time to obtain the time history of the solution. 

As is seen, the equations being considered are all in the same fort-n as 

(4.35) 

One crucial point for the success of the present study is the choice of suitable 

time integration scheme to solve (4.35). There are numerous schemes avail- 

able; however, for the present problem, it is highly desirable to adopt some 

technique which is simple to apply, needs less storage locations, and should 

be numerically stable. We have investigated two such schemes as described ” 

in the following. 

Implicit Finite Difference Scheme: In this scheme, use is made of the 
(4 two consecutive time step solutions, 4. 
J 

and $int” 
J 

, for time at nAt and 

(ntl) At. In particular, we assume 

and 

in = ( qy) _. qy)/at 

cbj= j OPl) + (1 - 8) &n) 
J 

o/e< 1 - 

(4.36) 

(4.37) 

Q 
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Upon substituting (4.36) and (4.37) into (4.35) and re,arranging, we 

finally obtain 

(2 + ‘Pij) $intl) = yi+[$- (l-~)~ij]ii”’ (4.38). 

Equation (4.38) is simple to apply and needs only one previous time 

step solution. Also, it can be’ shown for linear problems that the scheme is 

unconditionally stable for l/2 5 0 5 1 (see [31] ), thus one can avoid all 

stability worries and choose a value of At based solely on such considera- 

tions as desired accuracy. The above scheme, however, is only conditionally 

stable for 0 < 0 < l/2 and hence is not recommended for the problem pres- - 
ently studied. 

Galerkin Process in Time: Alternatively, the Galerkin weighted 

residual process in time can also be applied to matrix equation (4.35) to 

obtain a recurrence relationship similar to (4.38). This approach allows 

a more comprehensive treatment and indeed possesses all the possible 

merits of the diiferent variational processes suggested by Wilson and 

Nickel1 [32]. The recurrence could be written for several intervals simul- 

taneously thus necessitating more equations to he solved at each step but 

resulting in an improved accuracy and stability, thlls allowing a larger 

time step to be used. 

Generally, within the interval we shall assume an interpolated form 

for each of the time dependent unknowns cfi. 
J 

defined by its values at several 

time intervals 

t$, = N(i)(t) $fi) (sum on i) (4.39) 

in which Nti) (t) are appropriate shape functions defined continuously within 

the interval. 

For instance, if a linear interpolation is assumed, (4.39) can be 

written exp,licitly for the time interval (0 < t < At) as - - 

4-19 
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3 ,= (l 

-  & )  q+n) + &  qf+l) 

: 
From the above, the time derivative can be readily obtained as 

(4.40) 

J4.41) 

As the previous step solution 4 (4 . . 1s known, only one weighted residual substi- 
4 tution needs to be evaluated. More specifically, Eqs. (4.40) and (4.41) are first 

z 
* substituted into (4.35); then the result&g residual is multiplied by t/4t, and the 

weighted res.idual is integrated over the time interval (0 5 t 5 4t). We obtain 

finally 

ij (4.42) 

It is seen that Eqs. (4.38) and (4.42) are similar and they become identical 

when 8 is set equal to Z/3 and yi is independent of time. The two approaches, 

however, are based on entirely different concepts. In the finite difference 

scheme time is discretized and Eq. (4.35) is solved directly; on the other hand, 

in the Galerkin approach the nodal unknowns are assumed to be continuosu func- 

tions of time and Eq. (4.35) is solved by some average process in time. The 

latter approach is therefore more general and can be conveniently extended to 

multiple time step procedures and higher order approximations in time. The 

schemes discussed above represent only the simplest recurrence relations 

available and, of course, schemes of higher order approximation can be readily 

incorporated if circumstances require. 
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5; IMPROVED ,FINITE ELEMENT CODE BASED 
ON EULERLAN DESCRIPTION 

When shocks; compression waves or some other’type of discontinuities 

occur in the material, the gradients of the dependent variables in the governing 

equations become very large in the neighborhoods of discontinuities. These 

large gradients lead the effective diffusion terms in the equations to be nega- 

tive in some regions, and cause numerical instabilities in the interaction pro- 

cess during the numerical computations, if conventional methods described in 

the previous section are used. To overcome these difficulties, an alternative 

finite element formulation was investigated. 

The present formulation consists of Iwo primary portions. Firstly, the 

finite element formulation is constructed based on the theorem of weak solu- 

tions, so that the jump conditions can be satisfied automatically to take care 

of shock propagations. Secondly, a generalized two- step, time- splitting, shock 

smearing scheme has been developed and implemented. The scheme so con- 

structed has a capability to remedy the spurious oscillations arising due to 

numerical instabilities. 

In subsection 5.1, a general discussion on the theorem of weak solutions 

will be presented without proof. The governing equations in conservation form 

and the finite element analog of these equations, are presented in the sub- 

sequent subsection. The fomxlation of a two-step, time-splitting scheme is 

discussed in subsection 5.3. In order to predict the crater size and a numerical 

solution with adequate accuracy, the free surface of the projectile and target 

system must be treated with care. Discussion on this aspect is given in the 

last subsection. 

5-l 
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5.1 ON THE THEOREM OF WEAK SOLUTIONS 

The results from the theorem of weak solutions have been frequently 

applied in developing finite difference sch.emes for solving first order, non- 

linear hyperbolic equations . In most of these schemes, the advantages of the 

resulting forms deduced from the theorm are not fully utilized, since they are 

a1way.s in the integral form. This fa;ct;however, can be implemented in a 

simple way into a finit.e element scheme, and the advantages can be fully 

utilized. 

Various works on finite difference have indicated that, when the result? 

of the theorem of weak solutions are to be used in the numerical scheme, the 

governing equations need to be converted .into a conservation form (cf. Ritchrnythr 

and Morton [ 3 1 ] ). I n what follows, therefore, we restrict ourselves in consider- 

ing the system of hyperbolic equations in conservation form. It is obvious that 

all the conservation equations can be written in this form. The constitutive 

equations, however, are not in the conservation form but can be recast into 

such form as shown in subsection 5.2. 

5.1.1 Theorem of Weak Solutions for First Order Quasilinear Equations 

Consider a Cauchy problem of a system of quasilinear hyperbolic equa- 

tions 

a$ 8F k 
;)tt;fx= G, k= 1,2,3 

k 
(5.1) 

on a cylinder R = ‘Z (x) x T (t), where x = (x 
k 

1,x2,x3), F = Fk (x, t, (1) ), and C -. 

G (x. t, 4). A class of piecewise smooth and piecewise continuous, vector val- 

ued functions 4 in R for t > 0 are called the weak solutions of (5.1) if the lol- 

lowing relation is satisfied. 

(5.2) 
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where 5 d Cm with compact support on R, i.e.,, 5 is any continuously 
,‘.‘ ,&J 

differentiable function that vanish&s on 8R,’ the t%undary of R. 3 

,Lax [33], Oleinik [34], et al., have shown tat, if the following conditions 

are satisfied: 
Y 

.I Y 

1. For each k = 1,2,3, Fk has a continueus partial derivative 
k 

with respect to r#~ , and %&- is bounded for (x, t) c R;’ 
.il 1.a 1 
5 x L, 

2. For bou+ded 4, a2 Fk a2Fk “‘# 

a2 “k 
ab axkf: a42 

are +ntinuous, 2 

4- 
u .!J I 

and > 0; 
a+, - 

‘! 
',.!' 

..,:. 11,1 P 

3. The fun&ion G (x, t, 4) has a continuous partial derivative 
with res@ect to 4. u II 

The gkneralized solWon of Eq. (5. P\ with a pieced+e continuous initial condition 

is unique, and satis?es Eq. (5.2). .‘: 
. . ., 6 ,, 

;i : 

it :.. . 

The proof of the theorem can.‘be found in the aforementioned references, a -2 
and ~211 not be presented here. However, we shal& discuss in what follows 

some,immediate co&equences of tie theorem directly related to our proposed 
: 

form&lation. D 
0 

5.1.2 Jump Condition 

. 
3 

: L. 

Following the Green’s theorem, Eq. (5.2) can be deduced to a form 
v 

: 9 
t Fk 5 

ax, 
dsI dt 

. . 
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c 

= $ [6 (x.t)b(x,t)] dndt t 5FknkdSdt 

R aQ XT 

- fI.r 
GG dS1 dt (5.3) 

R 

where nk is the k th 
component of the outward unit normal vector on ,q, the 

boundary of R. 

Observe now the integrals 

Iv = 
ff 

$ [S (x, t) 4 ix, t>] dQdt (5.4) 

R 

for some tic T, xcai; and 

1 = 
S 

5 (x, t) Fk (x, t) nk dS dt 

an XT 

(5.5) 

for all xea!2, and te T. Since c (x, t) is piecewise continuous function with 

compact support .in R, it is obvious that Is = 0 if there is no discontinuity in 

R. Otherwise, we may deduce without difficulty the jump of the function Fk 

across the discontinuity, i.e., 

Is = Jr 
“S-Zs XT 

r; uFkD nk dS dt (5.6) 

where aRs is the surface of the shock layer, lI;kn denotes the jump of Fk, 

the k th 
component of F, across the shock. 
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For the integral I 
V 

, if there is no discontinuity on a, Eq. (5.4) can be 1,; 
redaced to 

1 ‘= 
V 

S i&t) d ht) s (x, 0) '4 (x.9 0) &a 

$2 Q. 

ACI%SS a shock, however, the Leibnitzfs rule yields 
.: 

: ‘.,i., 

@r 
t 

J 
,5 (x,9 6.1 4 (x1& 

. J 
cs b-d) dS(q) dS 

T 'p : acp * 
* ’ 

i 
- ‘., 

i e :r 

wheee the subscripts 1,2 denote t%e values at the upstream and downstream 

of the shock, respectively. Here, t?he speed of sound is defined as 
8 .a . 

I b2 
Q e 

0 k 
CsI= $$- nk * 

The last two terms in the above integral is no more than the jump of 4, i.e., 

Iv = 
J 

5 b, t) d lx, t) dQ - 
J 

-4 ( x, yPt b, 0) dfi 

!a G? 
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t 
J s (xtt) cs lx, t) [Id’] ‘dS dt 

ans XT 

Since the entropy condition requires that 

cs [fb]- [Fk] nk= 0 

The substitution of (5.6) and (5.7) into (5.3) then yields 

R 

= - 
/ 

t: (x, 0) d (x, 0) dR - 5 G dRdt 

R R 

(5.7) 

(5.8) 

(5.9) : 

This consequence implies that (5.9) satisfies the jump condition (5.8) auto- 

matically . 

5.2 FINITE ELEMENT ANALOGUE OF WEAK SOLUTIONS 

, . Recall that we are considering a system of equations 

a~,&, at axk 
(5.1) 

where F 
k = Fk(x,t,$), k = 1,2,3 and G = G (x,t,$). In this section, we shall 

formulate the finite element analog of equations in the form of (5.1). To do 

this, we have to write the conservation equations and the constitutive equations 

for impact problems in the above form. 

5-6 



Y 

LMSC-HREC TR D390900J 

5.2.1 Governing Equations in Conservation Form 

It is obvious that the conservation equations (4.1) througUl4.3) are in 

the conservation form. The constitutive equations (4.9), however, are not in 

the form of (5.1). Therefore, we recast the.constitutive equations as ‘. .a. 

y: I 

- s im wm 
j 

’ ‘m j ,“im ,I!;:; ~ 
a I.’ 

i 
b 

.i 

0’ 
:* II $jJ ’ I 

where 0 = div x. ,He’%e, an additional term @  S 
.I,’ 

ij 
appears on the ‘right-hand 

side, which is considered as the for!cing term. 

Thus, for high velocity impact problems, 

be wlpritten in the co%servation form (5.1) with 

th? governing equations can 
rr 

.I 

j idifl, 2,3 
. . 1 

0 
i,j = 1,2, 

a 

8’ @  5-7 
0 

.e ,!! 

, 

a (I. 
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[(@ - 2PY4 /fi) Sij t ipd.. 
1J 

‘t s mj %rn 
1; i,j,m= 1,2,3 

(5.10) 

5.2.2 Finite Element Formulation 

Suppose that the discrete approximation is constructed by appropriate 

interpolation functions in each element, and take t; (x, t) defined in (5.9) to be 

the weighting function with compact support in the cylinder AR = R, x T. Here, 

Q, is the volume of an element e, T = [ O,At] and At is the time step in the 

time-split scheme. In order to utilize integral relation (5.9) to minimize the 

c error, we have to approximate the (weighting) function 5 by the shape function 

at the previous time step, i.e., 

‘r = wat A)Nr, r=1,2,...m 

where m is the number of nodes in the element e. Also, approximate the 

solution to (5.1) as 

-&I 8:) + & ~~"' , S=l,....,m I 

(5.11) 

(5.12) 
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With these expressions , we obtain a matrix equation inthe form of 

tI*rsl - q [ Brs}) ~fbftl’l = ( [Ars] t ‘tt [ Brs]) I$?)/ t At /cr/ (5.13) 

where 

A = rs / 
NrNs dV 

v 

B = aNr 
rs Vk ax, - Ns dv 

J& 

8N 
cr = Hk e t ,N$G dW 

k 
I 

‘bL 

I 
(5.14) 

? 

Here, the vector ,H = ,F - 4~. 

5.2.3 Remarks 

Instead of using Eq. (5.11), we may as well as approximate the weighting 

function by 5, = lkN r, r = 1,2, . . . , m. In this case, however, tde integral 
@ 

formula (5.3) instead of (5.9) has to be used. Mathematically, these two form- 

ulations could achieve the same accuracy and possess a similar stability char- 

acter. Nevertheless, the surface ,integrals appearing in (5.3) would affect the 

numerical computations, as will be shown in the numerical experiments. 

This argument also explains the difficulties encountered in the conven- 

tional Galerkin method. It is essential that, after integration by parts, the 

Galerkin’s formulation as shown in (4.42) is similar to the matrix equation 

(5.13). The only difference between (4.42) and (5.13) is their relaxation factors, 

i.e., a coefficient 2/3 in (4.42) is replaced in (5.13) by a factor -l/3. However, 
I I the forcing vector I Crl in (4.42) contains surface integrals as in the afore- 

mentioned case when 5, = & Nr and (5.3) are used. Moreover, nlatrix 
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equation (4.42) does not satisfy the jump conditions. Therefore, the con- 

ventional Galerkin formulation is considered’less significant for solving 

hyperbolic equations. 

It is important to note that, however, neither the use of 5, = & Nr nor 

5,= l-h, ( 1 
Nr can always represent accurately the class of test functions 

having compact support on R if the conventional shape functions are used. 

These known classes of shape functions may not vanish or equal to a same 

constant on all boundaries of the cylinder R, although we have presumed 

that they do as required by the theorem of weak solutions. The error arises b 

from this aspect, nevertheless, can be reduced easily by treating the boundary 

conditions with care dur,ing the numerical computations. Meanwhile, constructing 

a new class of shape functions does not seem to be practical due to the difficulties 

involved. 

5.3 GENERALIZED TWO-STEP, TIME-SPLITTING SCHEME 

It is well known that the finite element method with conventional assembly 

techniques is equivalent to the centered finite difference scheme. When the 

method is applied to solve flow problems containing shock waves, numerical 

instabilities generally arise primarily due to the lack of dissipative terms. 

In the finite difference approach, this difficulty can be overcome by either one, 

or a combination of the following schemes: 

l Introducing artificial viscosity, 

l Replacing the center difference by a noncocentric 
difference scheme, 

l Utilizing the two-step finite-difference scheme, or 

l Introducing Lax-Wendroff’s second order correction, 
etc. 

All of the above variations except the second have been adopted in the current 

finite element codes to solve the impact problem. It is found that the last tw.1 
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. . 

approaches yield.ed promising results. However, due to the excessive compu- 

tation time needed with the Lax-Wendroff second order scheme, we have 

decided to adopt the two-step, time-splitting procedure., 

‘Consider a non-linear matrix equation 

e 
(5..14) 

<; ,- 
where [Ars], fBri] are square matrices, io a column matrix, and 4 (n) 

denotes the solutiorz, of 4 at the n 
th 

time step. In the present case, the factor -‘, 

8 = f/3, the iii 
a : 

matric s :..:. ’ . 
i .: 1. 
; I,,, I I ‘.I.. , 

5 ‘,’ 8 

A * =’ 
rs / 

‘h 
NrNgd% 

a 

and the vector 

B 
e 

k where H = Fk - v,$. 

r, l = 1,2,...,1 

Following the general approach of two-step procedure (see Richtmyer . 

and Morton [3 I]), the solution of (5.14) can be solved by the following steps: 
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[Ars],-Ate 2:“) iti)/ = ([A,,]+At (1 _ e) [Byl) 

where 
‘;;(n+i) 

rs 
= a Bk) + (1 - a) $lta) 

rs 

&+l) 
r 

= a Ctn) 
r t (1 -a) Etnta) r 

Here a is a relaxation factor, and the constant a may be an integer or a frac- 

tion multiplier of the time step. As will be seen in Section 6, the numerical ,o 

computations become more stable as the parameter a increases. The mathe -: 

matical aspect of the present formulation is yet to be studied in depth. In 

particular, the relation be&een a and the r&io of the time step size and the 

element size must be determined in order to obtain an optimal accuracy for 

the general Impact problems. 

5.4 FREE SURFACE CONSIDERATIONS 

In order to predict the crater size and produce a numerical solution 

with adequate accuracy, the free surface of the projectile and target system 

must be treated with care. Essentially, a free surface has zero pressure, 

but with its geometric shape changing with time. In the present formulation, 

the imposition of zero pressure on the free surface could be carried out con- 

veniently by proper consideration of the boundary integrals in the resulting 

algebraic equations ; however, the adjustment of the free surface location is 

somewhat more complicated. There are several ways of handling the free 

surface problem. In this subsection, two approaches which are believed to 

be suitable for the present technique will be discussed. One of the approaches 

is to consider the equation governing the free surface motion as.a part of the 

governing equations. The other one is simply to compute the solution on the 

free surface by an extrapolation procedure. 

5-12 
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5.4.1 Method Accommodating the ,Free Surface Equation 

Consider the free surface in Fig. 5-1, which separates the interior of 

the target from the void region, and let h (x, y, t) be the vertical distance from 

the x-y plane to the free surface. An equation governing the free surface 

movement can be ‘derived as follows. 

In Fig. 5-2, let A and B be two adjacent points on the free surface at 

time, t, with vertical distance defined by h (x, y, t) and h (x + u At, y t vat, t) 

respectively. Afte.r At, point A moves to point A’ whose vertical distance is 

h (x t uAt, y t vat, t t At). From the figure, we have 

Ah = h(xtuAt, ytvAt, ttht) - h(x t uAt, ytvAt, t) 

6 = h(xtuAt, ytvAt, ttAt) -‘h(x,y,t) t h(x,y,t)-h(xtuAt, ytvAt,t) 

= wht-h(xtuAt, ytvAt,t) t h(x,y,t) 

Dividing through by At and letting At - 0,wehave 
I 

ah ah c?h at= 6-uax-Vay (5.17) 

or equivalently, with first order approximation 

. 

Ah= (W-I+ v +At 

As mentioned above, to analyze the free surface motion, we consider 

Eq. (5.17) as a part of the governing equations, and is computed successively 

with the conservation equations, the constitutive equations, and the equation 

of state. Equation (5. 17)8imust be solved to find h, or equivalently Ah, at 

each node. Here we confine our attention only to the vertical movement of 

the free surface. 

8 ‘-5-13 
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Fig, 5-l - Target-Projectile Configuration with Target Free 
Surface Defined by h(x, y, t) 

w At 

h(x.y,t) 

4 
L 

t 
h(xtuAt, ytvAt, t) 

Fig, 5-2 - Motion of Points on Free Surface 
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The advantage of this approach is its formulation can be incorporatc!d 

into the coupled Eulerian-Lagrangian code directly as part of the code in the 

rezoning process. However, since Eq. (5.17) has the similar form as the 

governing equations, similar problems on numerical instability may arise 

during the computations. This problem remairis to be investigated in future 

studies . 

5.4.2 Method of Extrapolation 

Recently, an improved numerical finite element procedure is proposed 

by France 1351. The approach is applied to deal with two-dimensional steady 

state free surface problems. As an alternative to adjust the mesh in order 

to accommodate the movement and subsequent Location of the free surface as 

in the previous method. extrapolation is used in conjuncti,on with a fixed finite: 

element grid. The exact position of the free surface is determined when the 

imposed boundary conditions are sat.isfied. 

The extension of this approach into three-dimensional problems is 

straight-forward. The following illustrates the procedure with a linear brick 

type element. A typical element in the physical domain with the interface 

passing through is dep,icted in F,ig. 5-3. Here the shaded area represents the 

free surface which cuts the edges of the element at a, b, c, d. The nodal points 

of the element are denoted by 1,2, . . ,8. 

Let + (x, t) be a function whose value on the free surface is spe(:ifiecl. 

At each time step, we assume that the function can bc approximated :ls 

4~ =N,+ , r=1,2 ,.., m r (5.19) 

Then, the value: of 4 at the point a can be expressed as 

4Ja = ; [(I f”aNJ1 + (1 - ha)+51 

7 
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where (1, - 1, ha) is the location of a based on the local coordinate system. 

Thus, the nodal value of I# at node 5 can be obtained as 

Icl, = [W, - (1 - haI G1] /(l + haI (5.21) 

The values of 4 at n0de.s 6, 7 and 8 can be obtained in the similar way. The ’ 

matrix equation for the entire boundary surface is thus generated in terms of- 

the values at points of the free surface cutting the edges of all “boundary” ele- 

ments. But all values of 4 at “boundary’1 nodes are computed from the previous, 

time step, and + on a, b, c, . . . are all specified. Hence, the shape of the free 

surface can be obtained by solving this matrix equation. 

It is seen that this approach is s.impler to formulate compared to the 

.previous one, and the computations involve only algebraic equations. S’inc e 

the element geometry is ltfixedl’, it is only necessary to formulate t-he governing 

matrix equation for the initial cycle. These facts can naturally save computation 

time considerably. 

7 Element Boundary 

Free Surface 

3 

X 
Fig. 5-3 - Free Surface Passing Through a Typical Element 

i 
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5.5 SCHEME FOR SOLVING A LARGE SYSTEM OF EQUATIONS &I 

As is seen now, the numerical solution of the subject problem must deal 

with a system of governing partial differential equations. With the methods 

proposed herein, these equations are solved separately but coupled through 

iterations, thus reducing computer storage requirements to a great extent. 

However, for a general three-dimensional problem even with only one equation 

to solve, a solution with adequate accuracy will generally involve a large number 

of unknown parameters and hence result in a large system of algebraic equations. 

Therefore an effective scheme for solving such system of equations is obviously 

needed. 

The various methods t.o solve a large syste.m of algebraic equations can 

be classified either as a direct elimination process or as an indirect iterative 

process. The direct elimination process solves the system at a minimum num- 

ber of arithmetic operations while storage is at a maximum. For a large scale 

problem, even with the banded nature of the matrix taken into consideration, the 

storage can still easily*“excecd the core memory available on most existing 

computers. Thus, any large system equation solver would have to make pro- 

vision for efficient transfer of data between core memory and auxiliary memory. 

The iterative process, on the other hand, requires only a minimum storage while 

the number of arithmetic operations, due to the iterative nature, is not definite. 

For matrix with diagonal dominance, the convergence is fast, but for any other 

matrix the convergence is usually slow or even not convergent at all. 

Traditionally, the finite element workers have favored the direct elimi- 

nation process for the following reason. The structural problenls are mostly 

linear, or in case of nonlinear problems the nonlinear terms can conveniently 

be moved to the right-hand side with the load vector. Thus, for a given struc- 

ture, the decomposed coefficient matrix is invariant and the most time con- 

suming decomposition process needs only be performed once and for all. This 

decomposed matrix can then be used over and over to obtain a new solution 

corresponding to a new loading at a later time. It can also be used to obtain 
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an updated solution in an iterative scheme for nonlinear problems. This 

resolving capability of the direct elimination process makes it extremely 

attractive. 

Efforts have also been c.oncentrated on storing only the nonzero coeffi- 

cients together with an auxiliary pointer matrix to record their locations. 

For input purposes, this scheme certainly saves a lot of storage. Unfortunately, 

nonzero coefficients are generated within the band in the decomposition process. 

Thus, the decomposed matrix would be relatively dense and it appears that there P 

can be no saving on storage at output. In addition, some elaborate scheme is a 
required to keep track of these generated nonzero coefficients. 5 

At this time, no definite conclusion has yet been reached whether to use 

the direct elimination process or the iterative process. It appears that storing 

the entire band matrix in core memory or auxiliary memory, and using the 

direct elimination process would be a good approach. Recently, two computer 

programs based on such an approach were published. The program due to 

Wilson et al. [ 361 was written for a positive definite symmetrical band matrix, 

while the program by Vendhan et al. [ 371 can take either symmetric or un- 

symmetrical band matrix. On the other hand, the iterative process such as 

the “Frontal Solution Technique” [ 381 is also very attractive for its minimal 

storage requirements and consideration of the nonlinearity of a problem. All 

these equation solvers are under study for possible inclusion in the final com- 

puter program. 
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6. TEST PROBLEMS AND NUMERICAL .RESULTS 

In this section we discuss, in detail, both the inviscid hydrodynamic 

model and hydroelasto-viscoplastic model of a one-dimensional impact problem. 

Subroutines for numerical evaluation .of shape functions, generation of ,matrix 

equations, as well as the equation solver; etc., are tested and debugged by solv- 

ing various cases of heat conduction problems. The finite element/Gal erkin 

procedure discussed in Section 4 is employed to solve the problem, and 

the details are presented in the Subsection 6.1. In the second subsection, 

we shall discuss the inviscid hydrodynamic code in some extent. Included in 

the discussions will be the numerical experiments of the given test problems 

in impacts, the comparisons between the methods of weighted residuals and 

the improved scheme discussed in Section 5, and some related aspects con- 

c e rning the numerical technique. The hydroelasto-viscoplastic model will be 

discussed in the last subsection. 

6.1 HEAT CONDUCTION IN SOLIDS 

The heat conduction problem was chosen to test and debug a number of 

subroutines such as the numerical evaluation of shape functions and their deriv- 

atives for various three-dimensional isoparametric elements, assembly routine, 

time marching schemes, and equation solver, etc. The problem had been analyzed 

rather thoroughly to give us confidence in these subroutines, however, for brevity, 

only major results are presented herein. 

As is well known, the heat conduction problem is governed by the diffusion 

equation in the following form 

II 

i3T 
at 

=. v2T (6.1) 

6-l 



..- -- 

LMSC-HREC TR D390900 

subjected to an initial condition and to a’set of boundary conditions that are 

admissible to the equation. Note that the vaiiables in (6.1) and in what follows 

are all normalized by the characteristic length, time and temperature. 

The steady state solution of the problem, i.e., the asymptotic solution 

of (6.1) at t w 00 , is identical to the solution of Laplace equation: 

2 2 2 
V2T = aT+aT+aT= 0 

8x2 ay2 az2 
(6.2) 

subject to the same set of boundary conditions of either specifying the temper? 

ature, or the normal derivative of the temperature, or a combination of both, 

as in the unsteady case. This problem, when cast in a variational form, has 

the following integral expression 

. 

- ff 
(q T -+T2)dS 

S 

(6.3) 

It can be shown that, upon minimizing the above integral (i.e., 61 = 0), one will 

obtain (6.2) together with the following natural boundary condition, 

aT 
Bn 

= q taT (6.4) 
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Standard finite element procedures are then applied, based on (6.3) to 

obtain a system of algebraic equations in the form; 

PijTj =y; (6.5) 

where 

‘ij =/J/ (Ni,xNj,x ’ Ni,yNj,+ + Ni,,Nj.i) do 
v 

a Ni Nj dS (6.6) 

and 

Yi = qNi dS 

S 

In the above, p.. 
13 

is the influence coefficient matrix, yi is the load matrix, 

and the repeated index j implies summation from 1 to m, the total number 

of unknown parameters. Ni and Ni x etc., are the shape functions and their 

derivatives, respectively. Since iioparametric elements are used, numerical 

integration scheme described previously is used to obtain these matrices. 

Two sample problems were chosen to check out the computer codes. 

They are the heat conduction in a cube and that in a hollow sphere, for which 

analytic solutions are available for comparison purposes (see Carslaw and 

Jaeger, [39], pp. 177-179, and pp. 230-231). 

6.1 .l Steady State Heat Conduction .in a Cube 

Let us consider a cube (see Fig. 6-la) defined by 

O<x< a, O<y< b, O< z< c - - - - - - 
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subject to the followirig boundary conditions 

T = T1 ,onx = 0 

.T =Ti onx=a 

T=O on other surfaces 

The analytic solution in terms of infinite series is 

sinh e(a-x) t T2 sinh eX 1 sin (2m+ 1)ny sin (2n+ 1:) 77~ 
b C 

(2m t 1) (2n t 1) sinh Pa 

in which 

‘[ 
2 1 = (2mt 1) A 1 [ +@=F I 21 

l/2 

I b I 
For numerical computations, the element mesh shown in Fig. 6-la is used 

together with a = b = c = 1, Tl = 0 and T2 = 1. To impose the boundary condi- 

tions on the surfaces of the cube, the nodal parameters on these surfaces are 

set equal to 0.0 or 1.0 accordingly. However, because the temperature is 

double-valued along the four edges of the surface x = a, some average scheme 

has been adapted to take care of this singular behavior, with the four corner - 

node parameters set equal to l/3 and the remaining nodal parameters on the 

edges set equal to l/2. An alternate approach to resolve this difficulty is to 

use another grid with finer mesh arranged in the aforementioned region. With 

the present uniform mesh (two elements in each direction), computations have 

been carried out using both the cubic arid quadratic isoparametric elements. 

Our results, as shown in Fig. 6-2, appear to compare well with the series solu- 

tion and the property of symmetry about the y’- and z’- axes was also observed. 

Both sets of finite elemer,lt results show some oscillation about the series solu- 

tion, this waviness is believed due to the relatively coarse mesh used and the 

singular behavior of the boundary condition along the four edges on surface 

x= a. 
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0.8 

I 

0.6 

0.01 

Series solution (N = 50) 

Quadratic elements (two in 
each direction) 

a. Along x1- axis 

0.2 - 

T 

0.0 
-0.5 -0.3 -0.1 0.1 0.3 a.5 

b. Along y’ - or z’ - axis 

Fig. 6-2 - Comparison of Predicted Temperature Distribution in a Cltbe 
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6.1.2 Steady State Heat Conduction in a Hollow Sphere .ia 
: . . 

The hollow sphere is defined by a < r < b, subject to the boundary _ _ 

conditions 

T = T1 onr=a 

and 

The analytic solution is in the following form 
l 

i T = 
a (b-r) T1 t b (r-a) T2 

f 
r (b-a) . 

- 

Because the solution is a function of r only, a prism asashown in 
. 

Fig. 6- lb was takeA for computations. The inner and outer radii of the 

hollow sphere wer& chosen to be 1.0 and 2.0, respectively. The boundary 

conditions imposedeon the prism qre ‘B 
:. . 

T = 0.5 on r = 1.0 . .- ’ 
I . 

i T = 1.0 on r = 2.0 

and t 
I 8T -.- = 

an 0 Q-)n other surfaces 

Again, both quadratic and cubic is,oparametric ekments have b&n used in 

the computations, with results shown in Fig.6-3:. As is seen, there exists 

excellent agreement between our predicted results and the analytic solution, 

even with only one element. Results obtained by using.finer meshes are 

almost identical to the analytic solution. The high accuracy achieved by the 

present analysis is obviously attgibutable to the .ability of isoparametric 1 

elements to represent both the geometry and the solution frlnctr *A accurately. @  

Also, for the preseti problem, thebell posed boundary conditions (no singu- * 
,= I 

lar behavior) make it easier to obtain an accurate numerical solution with 

relatively few elem nts. 
‘i 0 

I I 6-7 Q  
0 0 _. 
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Symbol Elements 
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a: With Quadratic Isoparametric Elements 
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0. 
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0. 
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ig.6-3 - Comparison oi Predicted Trmpcraturct Distrihut 
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6-8 



LMSC-HREC TR D390900 

6.1.3 Transient Solution 

The time marching schemes discussed in Subsection 4.4 have been tested 

numerically for the three-dimensional transient heat conduction problem. The 

governing differential equation now has the form 

aT a2T b& +& 
at = &2 ay2 a2 

(6.1) 

with initial and appropriate boundary conditions. By applying the Galerkin 

technique with respect to the space variables, a system of a!gcbraic equa- 

tions, with an additional term involving time derivative, is obtained 

aij ij t B.. T. = 
1J J 

y. 
1 

where 

a = 
ij ffl Ni Nj dY 

V 

’ - ij - fI.lr tNi, XNj, x + Ni, yNj, ,,, ” i ;,,I dV - I JY aNiNjdS 
v s 

and 

Yi = 
I.-l q Ni dS 

S 

(6 .‘7) 

(6.8) 

The steady state solution of the hollow-sphere problem was again selected 

as the testing case. The tests include differc:nt time marching schemes, size 

of time step, various order of elements, and effects of initial conditions. Tile 

solution is considered as reaching steady state when certain prescribed con- 

vergence criterion is satisfied. The one prascntly used is that for every 
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undetermined parameter the difference between two consecutive time steps 

must be less then lo- . 

satisfy this crlterron 1. 

All the testing cases except one (At = 2.0 in Fig.6-4) 
. ; . . .. less ‘than ten time steps’. Figures 6.-4 through 6-8, 

show some of the results’. 

Figure 6-4 shows the temperature history at the point r = 1.5 obtained 

by the implicit finite difference scheme with 8 = 0.5 (i.e., the Crank-Nicholson 

type), using two linear elements. Although the results show some oscillation . 
about the steady state solution the scheme is obviously stable, regardless of 

time step size. The scheme of two-step Galerkin in time (equivalent to 8 = 

2/3 in the implicit finite difference scheme) was also tested for the same 

problem, with results. shown in Fig. 6 -5. Oscillation about the steady state 

is seen to be reduced significantly with improved convergence rate, thus 

demonstrating the merits of the Galerkin process in time. Two additional 

tests were conducted for cases with quadratic and cubic isoparametric ele- 

ments together with two-step Galerkin process in time. The trends of con- 

vergence for these cases are shown in Figs.6-6 and 6-7, respectively. For 

this particular problem, no significant difference is observed in the paths of 

convergence with various numbers of elements. 

Results in Figs. 6-5 through 6-7 were obtained by assuming zero solu- 

tion throughout the entire field (including those on the boundary) at time t =‘O. 

To see how,the initial condition affects the solution path, non-zero boundary 

conditions were also applied from the onset (t = 0), and results are shown in 

Fig. 6-8. Some significant disturbance for the first steps is noticed, especially 

for cases with a large time step. The disturbance, nevertheless, was quickly 

damped out and convergent solution is still attainable. 

6.1.4 Radiation Boundary Conditions 

Subroutines for the boundary integral involving a curved surface has been 

written and was checked by analyzing the problem of heat conduction in a hollow- 

sphere subject to “radiation” boundary conditions (see [34], p. 19). Instead of 
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specifying the temper.ature on the inner.and’duter surfaces, the boundary 

conditions are now 

2 .= hl (Tl -T) at r =a 

aT 
an = h2 (T2 - T) at r=b 

The above expressions indicate: at r = a radiation from the medium at T 
1’ 

and at r = b radiation into the medium at T2. hl and h2 represent the ratio 

of surface conductance to thermal conductivity of the medium. The analytical 

solution for this problem is 

Tlhl a2 [b2h2 - r(bh2 - l)] t T2h2 b2 [r(ahl t 1) - a’hl] 
T = 

r[b2h2 (ah1 + 1) - a’hl (bh2 - l)] 

For numerical computations, we choose 

2 a= 1, b = 2, hl = 2, h2 = 1, Tl = 0, and T2 = 1 

Then the exact solution becomes 

Figure 6-9 shows the predicted temperature distributions using only 

two elements, linear, quadratic or cubic. The numerical results obtained 

by using higher order elements and the analytic solution agree very closely; 

the results obtained by using linear elements, though less accurate, are 

generally good. Figure 6-10 shows the temperature history at the point r = 

1.5 with various element representations for the same problem, with Galerkin 

process in time. In all the cases the solutions converged to the steady state 

solution (convergence criterion 10 -4 
) within 20 time steps. 
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5.2 IMPACT PROBLEMS WITH HYDRODYNAMIC MODEL 

3.2.1 Description of a Typical Impact Problem 

As pointed out in our earlier discussions, a hydrodynamic model is a 

Toad approximation in the early stages of the? high velocity impact process, 

luring which the pressure is comparable to the shear strengths of the targci 

naterial. As a starting point we begin with a numerical solution to the hydro- 

lynamic equations with the inviscid adiabatic approximation. In this case the 

-onservation equations, with o,. . = - 
1J 

Pd.., become 
13 

g(P) = 
a 

- 5 (Pvj,) 

~ (pvi) = - & (PI - & 
i ! 

(pvivj) + P fi 

$ (PC) 1 - $ (PVi) - $r (pevi) + Pf’ivi 
i I 

view of (-4.4), the above equations can bc written in the alternate form 

i&v * i 8x l t@p =o 
i 

g- (Vj) t vi & (Vj) + 0’ j = - s 
i j + Fj 

g- (E) t vi & 
i 

(E) tOE = i$ 
i 

(Pvi) t Fi v. 1 

(6.10) 

(6.9) 
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Consider the impact of a cube on ,a simi-ififinite body of po,ssibley dis- 

similar material 2it a velocity of Vo. For simplicity we can assume that thC 

target is a semi-infinite cube- of dimension four time larger than that of the 

projectile. Because of, the symmet.ry about the z-axis, it is sufficient to 

analyze the quadrant bounded .by positive x, y, z-axes (see Fig. 6- 11). A 

typical finite element mesh of the projectjle-target configuration is shown 

in Fig.6-12, which is generated by a prograIn subroutine (MESH). The sub- 

routine generates nodal n,umbers and their coordinates in the target as well 

as in the projectile. 

Initial Conditions: - --- We assuml‘: that the targc?t is at rest at time t= 0. 

Let Sp denote the set of nodal points in the projectiie and St denote the set of 

nodal points in the target. Then S = S 0 f7 S denotes the set of nodal points 
P t 

common to the target and projectile (i.c., [X-I t.hca interface). For t = Of, WC: 

have the following initial conditions fcJr density. ])r6ssure, and internal cncryry. 

.‘i = Pot’ i C St 

P: = Pop’ i CS 

P; =: 0 
P 

Pi 

i C Sp l.i S, - So 

= PO’ i C S 
0 

E. = 
1 

0, i ES 
P 

US 
t 

.th where the subscript flil’ refers to ihe .I node, p ot and P 
oP 

being the initial 

densities of the target and t-he projec:tilc, respectively, and P o is the pressure? 

at the interface, and should be calculated From the Rankine-Hugoniot relations 

for the target and projectile, 

Projectile Target 

p1 = Pop (V. - 9) w. + U1) p2 = PO, 9 u2 

(1 - r-/Q (V. + U1) = v. - 9 (1 - rj2) u2 = q 

El = P1 (1 - rJ1v2 Pop c2 = P, (1 - r/2v2 PO, L. 

(6.12) 
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a. Entire Configuration 

X 

b. A Quadrant of the Target-Projectile System 

et 

Fig.6-11 - Impact of a Cube on Semi-Infinite Target 
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Fig. 6-12 - A Typical Finite Element Mesh of the Projectile-‘Target 
Configuration 
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Here the subsciipt “1” refers to.the projectile and “2” refers to the target; 

q is the particle velocity at .the interface and U is the shock velocity. We 

have assumed in writing (6.12) that the initial pressure and internal energies 

are zero. From (6.12) we obtain 

an.d 

v. -‘cl = d- 

q=qf - (1 - 712) . 

(6.13) 

(6.13. 

The interface pressure is given when P1 = P2. = P 
0’ 

When the projectile and 

the target are of the same material the interface particle velocity, q, is 

given by 

9 = vo/2 (6.15) 

To calculate the interface pressure PO ‘Lt impact we proceed as follows: 

We have from (6.23) and (6.14): 

rl.2 = l-Pot (6 . 1 h i 
. . . 
. 

For.various values of nl we can calculate r)~,from (6.16), wherein the pres- : 
sure Pl is calculated from the .Hugoniot equation of state. 

.A ~’ 

Initial conditions on the velocity components ui, vi and wi in x, y and 

z-directions, respectively, are 

U. = v. 
1 1 

= 0, i C St 9s 
P 

i C Sp - So 
(6.171 

i CS 
P 

-So 

w. = 
1 

-q9 i CS 0 

where q is computed from (5.14) (q is equal to Vo/Z for like metal impacts): 

b . . 
‘ 6-23 
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Another way is to’usc conditions at t = O.-, the time prior’ to impact, as 

initial. conditions . To do this, every unknown is set equal to zero except 

density and those quantities related to impact velocity such as velocity, 

momentum and total energy in the projectile. These initial data may be dis- 

continuous, which are, of course, taken care of .conveniently in the present 

formulation. This set of initial conditions has been used in most of the com- 

putations. 

Boundary Conditions: As mentioned earlier the pressure must be zero 

on the free surfaces. Since the target is semi-infinite, the material particles 

far away from the impact.region are unaffected. Hence, the internal energy 

and velocities must be zero and the density must be undisturhed. These 

boundary conditions, together with conditions for the plane of symmetry, are 

sketched in Fig. 6-13. 

Remark on the Equation of State: As mentioned earlier, there are two 

forms of equation of state being frequently used .in high velocity impact prob- 

lems. They are the Los Alamos equation of state and the Tillotson’s equation 

of state, both obtained from experiment. Obviously values of computed pres- 

sure distribution in materials depend heavily on the particular equation of state 

being used, which in turn will affect the entire numerical solution. Some un- 

certainty apparently exists regarding the two equations as they do not appear 

to agree closely .in general and each seems to have its own range of validity. 

For instance, the Los Alamos equation of state and Tillotson’s equation of 

state differ substantially in the case of aluminum (see Figs.6-14 and 6-15) 

for internal energy values below 7.5 Mb-cm3/gm, and agree closely in the 

range of 40 to 43 Mb-cm3/gm, as seen in Fig. 6-16. Therefore, caution must 

he exercised when a specific equation of stale is employed in the numerical 

computations, and it seems that a more accurate equation of state is needed. 

6.2.2 One-Dimensional Impact Problem 

A one-dimensional impact problem is used herein to test the validity 

of the formulations presented .in Sections 4 and 5. The problem under 
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Fig. 6-16 -. Variation of Pre:ssure with Internal Energy (Aluminum, 
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consideration is that an”ififinite plate travelirig ‘it ‘-i specified sp,eed, ~0, hits 

normally on another infinite plate at rest, as depi,&ed in Fig. 6,17a. The two 

plates are 30 cm thick, and composed,of the same aluminum Material with 

initial density p, = 2.73 3. gm/cm The impact velocity iS chd8en.$o be v = 
0 

0.008 cm//&ec for which a solution in elastic range of impact fs.available for 

comparison 1401. 

The problem was solved by the three-dimensional mode.ls described in 

Sections 4 and 5. The mesh and nodal numbering are generated by subroutine 

MESH and depicted in F’ig. 6- 17b. The Rankine-Hugoniot pressure, P iS 
S' 

readily obtained, using the Los Alamos equation of state, 

‘P 
S 

= 5.99868 x 10m3 megabar (6.13) 

The following numerical computations are performed based on inviscid assump 

tion together with the Los Alamos equation of state. 

Solution Computed by Methods of Weighted Residual: It is found from - - 
the numerical solution of (6.10) that the Galerkin approach do&s not perform 

satisfactorily. Although the scheme appears to be stable up to the time com- 

puted, there is a sign that .the pressure development in the material tends 

to grow indefinitely. This’ phenomenon becomes more severe when the impact 

velocity is increased. Spurious oscillations with fairly large amplitudes always 

gather near the wave front, and the peak pressure is seen to exceed the Hugonio 

pressure by about 50% to 100% as the velocity v. increases from 0.008 to 0.75 

cm/@ec. As remedies to the instabilities, some modifications such as incor- 

porating the mid-point’ Runge-Kutta scheme into the code, as well as other 

methods of weighted residuals such as the least gquares approach are .intro- 

due ed. Figure 6-18 shows the time history of pressure at interface computed 

by the method of least squares. The results computed by a modified Galerkin 

approach using mid-point Rungc-Klltl:a scheme are found to be almost identical 

to those shown in Fig. 6-18. There is some ?mprovement on the development 
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history of the pressure field. However, the pressure at. the inte’rface still 

shows a tendency to diverge as time increases. The numerical instabilities 

can also be detected by the spurious oscillations near the shock .fronts as 

shown in Fig. 6-19. 

Solution Computed by Weak Solution Formulation: The pressure history 

at the interface computed using (5.15) and (5.16) with a= l/2 is depicted in 

Fig. 6-20, and the corresponding pressure distributions at various times are 

shown in Fig. 6-21. It is seen that the results are improving compared to the 

ones computed by methods of weighted residuals as depicted in Figs. 6- 18 and 

6-19. The solution may be improved even further when the parameter a in 

(5.15) is increased. Figures 6-22 and 6-23 show the pressure history at the 

interface using a= 2, and 4, respectively. The corresponding pressure dis- 

tributions are plotted in Figs. 6-24 and 6-25. 

All results discussed so far and depicted in Figs.6-18 through 6-25 are 

computed us.ing 16 linear elements. As shown in Figs. 6-21, 6-24 and 6-25, 

the overshoot due to the numerical instability decreases rapidly, and the zig- 

zag behavior near the wave front becomes less severe as the parameter a 

increases. These facts indicate that the numerical dissipation introduced in 

the scheme is proportional to the parameter a. 

The plots also show some substantial differences in amplitudes of the 

pressure waves among different a and u val~lcs. In addition, as shown in 

Figs. 6-22 and 6-23, the numerical dissipation increases as a decreases, 

and the phase lag becomes more apparent at the same t.irne. These .irnply 

that various errors may enter in the computations if the scheme is over- 

di s sipated. The sens,itivity of the solutions upon the factor a, however, can 

be made inert by refining the rne!jh as shown in Figs. 6-26 through 6-29 where 

30 even spaced linear elements were used in the computations. In this case, 

the same time step size as ctmployed in the 16-element case was used. This 

vcrifics the statement mentioned in Section 5.3, namely, the factor a is indeccl 

related directly to the ratio of the time step size and the element size. As i.hc 
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mesh size reduced, the effect of a on the accuracy of the sol&ion becorn& 

less ,important. The results. using 16 quadratic e1etient.s also shoti the same 

trend. In Figs. 6-30 and 6-31, the pressure.,history at the interface is depicted : - 
using a = 2.0 and a = 4.0, respectively, with diffe?ent a. As expected, these 

results are improved compared to the cases with 16 linear elements, but are 

less smooth when compared with that using 30 linear elements. Similar com- 

parisons can also be made for the pressure distributions (see, e.g., Figs. 6-24, 

6-25 for 16 linear elements, Figs. 6-28, 6-29 for 3’0 linear elements, and Figs. 

6-32, 6-33 for 16 quadratic elements). 

As is seen, all the casts seem to underpredict the peak pressure com- 

pared to the analytic solution. However, with the same given cotiditions and 

Los AImos equation of state, the pressure computed by Rankink-Hugoniot 

relations is Ps = 5.99868 x 10 -3 
megabar. This value is approximately 

equal to the average value as shown in Figs. 6-28 and 6-29 which indicates 

that our numerical results are quite reasohable. Accordingly, Ps should be 

the upper bound for the average pressure distribution in the material under 

high velocity impact, since the physical as well as numerical dissipative 

effects may actually reduce the pressure buildup in the material. Therefore, 

it is believed that the deviation of the analytic solution from the computed 

Rankine-Hugoniot pressure and from our results could be due to .one of the 

following: 

l The assumptions made in the theoretical analysis 
lead to a too simplified model, so that the analytic 
solution was overret?mated. 

l There are possible misprints related to the given 
conditions in the report we obtajned, and 

l The analytic pressure distribution, Ps = 7.22 x 10 
-3 

was normalized by the impact velocity, V, = 0.008 
cm//&ec, but was not mentioned in the report. 

These possibilities hopefully can be cleared up as soon as we locate the 

0 riginal report. 
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The speed of sound in a material can be obtained.in the relation 

c; =(gGs 
Following the Gibb’s equation, one has 

c”,=~ig+z$ 
P 

(6.9) 

(6.10) 

where c is the specific internal energy which is now being considered as a 

function of total specific energy and the particle velocity. Thus the propagation 

speed of the pressure waves can be computed by substituting the nodal solution 

of the conservation equations and equation of state on the clement containing thlx 

wave front into (6.10)., The numerical values of Cs in the target obtained using 

Los Alamos equation of state at some typical times are shown in Table 6- 1. 

It is seen that the values oscillate around the shock speed computed by Rankincs- 

Hugoniot relation, i.e., Cs = .53569 cm/psec. In elasto-dynamic theory, 

on the other hand, the % soun -sHpeed is represented by 

CSEl = j&YxFg . (6.11) 

where v is the Poisson ratio, E is the Young’s modulus. With v = 0.33, 1: = 

lo7 psi for aluminum, Eq. (6.11) gives C .= 
SEB. 

0.60729 cm/psec, which deviates 

from the values obtained by the present approach by about 10%. This implies 

that the compressibility effects play an important role in the dynamic response 

of materials under high velocity impact loads. In addition, although in the 

present hydrodynamic model the material is assumed to be inviscid, the dis- 

sipation resulting from the equation of state and numerical viscosity as well 

may affect the local speed of the pressure waves. 

6-49 



Table 6-l 

PROPAGATION VELOCITY OF PRESSURE WAVES IN TARGET. 
AT VARIOUS TIMES AFTER IMPACT 

(WITH 30 LINEAR ELEMENTS) 

Poisson Ratio, v = 0.33; Young’s Modulus, E = lo7 psi; 

Impact Velocity, V = - 0.008 cm/psec 0 

. 

Time, t(psec) 0 5.0 10.0 18.0 26.0 31.6 35.0 

Shock S eed, 
P 

.53442 .54123 .538& .53880 .53679 .5380 1 .53782 
Cs (cm psec) 

: : 

Rankine-Hugoniot - Cs = .53569 cm/psec 
,’ ‘1’. 



Momentum and Energy Distributions: .- 
tributions at t = 20 and 30,~sec are depicted 

elements, Figs.6-36 and 6-37 for 30 linear 

LMSC-HRtiC TR D390900 

Momentum and total energy dis- 

in Figs.6-34 and 6-35 for 16 linear 

elements, and Figs.6-38, 6-39 for 

16 quadratic elements. In these plots, the parameter a= 2.0 are used. A 

better accuracy using 30 linear elements against 16 quadratic elements is 

obvious. In particular,,as seen in the rarefaction region, the momentum and 

total energy distributions computed using 16 quadratic elements are severely 

distorted by the numerical instabilities. Hence, a larger parameter a is 

needed, although it is not so obvious from the plots of pressure distributions. 

Depicted in Figs. 6-40 through 6-42 are momentum and total energy distribu- 

tions using various types of elements with a= 4.0, and as expected, better 

results are obtained. 

6.2.4 Three-Dimensional Impact Problem 

A simple problem of a 4 cm aluminum (p, = 2.702 gm/cm3) cube im- 

pacting at a velocity of 2.6 cm/p set on a semi-infinite cube (16 cm cube) 

was also tested. The numbering of nodes in the mesh is depicted in Fig. 

6-43, with the corresponding boundary conditions given in Fig. 6-13. 

For this problem, only preliminary results by the Galerkin procedures 

are available, which are shown in Figs.6-44 and 6-45. Figure 6-44 shows 

the pressure variation with time at various nodes on the interface, while 

Fig. 6-45 depicts the pressure variation with distance into the target at various 

time. In the computations, Los.Alamos equation of state was used and nega- 

tive pressures at .any node in the projectile-target configuration were not 

allowed. Nor was the movement of free surface accounted for at the time 

of computation. Like the one-dimensional problem, the Galerkin formulation 

again indicated some numerical instabilities which must be remedied. 

Computations using the weak solution formulation ,is in progress, which 

&ill be discussed in the final report. 
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6.3 IMPACT PROBLEM WITH HYDROELASTO-VISCOPUSTIC .MODEL 

The governing equations with their finite element analogues are given 

in Section 5. The compute7 code will, at the end, be capable of handling large 

deformations, anisotropic materials, plastic yielding bnd material fracture. 

The one-dimensional impact problem discussed earlier is used also to 

test the present m’odel. The problem description and the finite element mesh 

have been shown in Figs.6-17a and 6-17b. In the computations, the material 

constants are assumed to be: 

Initial density, p, = 2.77 gm/cm3 

Shear modulus, /J= 0.276 megabar 

The impact velocity, v 
0 

= 0.008 cm/psec, and Los Alamos equation of state 

was also used for the present problem. For the purpose .of comp.arisons, 

the problem was solved by both the Galerkin method and the weak-solution 

f 0 rmulation . 

Results Corned by Galerkin’s Procedures: Figures 6-46 through 6-48 

show the pressure and axial stress histories at the interface, the normal stress, 

momentum and total energy distributions computed by the Galer.kin method. 

When they are compared to the results computed from the inviscid hydrody- 

namic code, it is clear that the spurious oscillations behind the shock front 

are smaller. However, the pressure development at the interface seems agai? 

to grow indefinitely, though the results computed up to the time is still finite. 

The axial stress, on the other hand, is found to be much lower than the Hugoniot 

pressure, P 
S’ 

Moreover, the normal stresses on planes perpendicular to the. 

axis are mostly positive, which imply the materials are under tensile stress 

in the axial direction. This obviously is not. physically correct. These phc- 

nomena, therefore, indicate that the numerical results computed by Gslerkin’s 

method are totally unacceptable. 
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Results Computed by Weak Solution Formulation: The numerical solu; 

tion of the problem is much improved when the technique based on ‘weak 

solution formulation is used. In Fig. 6-49, the pressure as well as the axial 

stress history are depicted against time. The parameters used in this com- 

putation are a = 4.0, c% = 0.0, and the time step, At = 0.2/&.ec. When these 

results are compared with those %1 the inviscid case (see Figs. 6-22 and 6-23) 

some deviation is observed. In the inviscid hydrodynamic model, the pressure 

history computed using both a = 2.0 and a = 4.0 is found to be damped out signif - 

icantly as time increases. Using the present method with a = 4.0, however, 

results seem to suggest that less dissipations are present. The reason for, 

this is not clear at the moment. Further mathematical study of this algorithm 

is needed to clarify the question. 

The distributions”bf the normal stresses at t = 10.0, 20.0 and 34.2/lsec 

are depicted in Figs. 6-50 through 6-52., ‘respectively. As indicated in the 

plots, the compressive axial stress o zz.has an average value approximately 

equal to the Hugoniot pressure, P s’;. after some time of the impact. This, 

again, suggests our numerical results are quite reasonable. For this partic- 

ular example, the impact velocity is moderate, and the viscous effects may 

come only from the equation of state but not from the constitutive equations, 
. i.e., the shear stresses computed from the constitutive equations are ncglig,ibly 

small compared to the normal stresses. This implies that, the dynamic: re- 

sponse of the materials due to impact is in the elastic range, and the stress 

wave must have an average value approximately equal to Ps. 

From Figs. 6-50 through 6-52, we may also find the fact that, even the 

parameter a used in the computations is set. to bc 4.0, the spurious oscillations 

behind the wave front are still apparent. The lack of numerical dissipative 

effects in the scheme can also be detected in the interacting region of rare- 

faction waves as depicted in Fig. 6-53. To smooth out the zig- zag behavior, 

an increase of a can be employed, so long as the stability criterion of the 

present time marching scheme is not ,violated. A hctter way for reducing 

these oscillations, however, would be to refine the mesh and/or use higher 

order elements.. Further studies on this aspect arc underway and datailed 

discussions will be presented in the forthcoming final report. 
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7. SUMMARY AND DISCUSSlON 

The objective of the current study is to develop a finite element com- 

puter program f0.r the numericat solution of three-dimensional high velocity 

impact problems, based on the Eulerian hydroelasto-viscoplastic formulation. 

Two models, namely, the inviscid hydrodynamic model and the hydroelasto- 

viscoplastic model were formulated. The theoretical basis and detailed form- 

ulations for the subject problem were discussed in the preceding sections. 

Computer programs based on the methods of weighted residuals and the thcorm 

of weak solution have been coded and debugged by running a number of test 

problems. 

For general impact problems, the conventional methods of weighted 

residual were found to be unsatisfactory. The main reasons are: 

l The f.ormulations, such as in the methods of Galerk,in 
and least squares, do not generally satisfy the jump 
conditions . 

l The finite element analog of the problem always lacks 
of dissipative terms, and thus causes severe numerical 
instabilities behind the discontinuity such as shocks, as 
well as in the interacting region of rarefaction waves. 

These difficulties can be overcome by the two-step, time-splitting finite 

element formulation based on the theorem of weak solutions. The success 

with this formulation has been demonstrated by a number of numerical experi- 

ments. As indicated by the numerical results, though-the relaxation factor CY 

is related directly upon the ratio of the time step size to the mesh size, the 

sensitivity of the solution upon (r is rapidly reduced by refining the mesh and 

by using higher order elements. The value of the parameter a in Eq. (5.15) can 

also be reduced by similar treatments to acquire the same stability criterion. 
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: 
It is believed that, an optimal choice for ‘a would be thd sakisfadtion’of .the 

: 
following condition; 

.. 

k.= 1,2,3 : 

,. 

where c is the local sound speed, A\ is the mesh size along x -direction. 
S k. 

Despite the successfulness of this presently developed technique, its 

mathematical structure needs to be investigated further. At the preSent time, 

the suitable choices of a and a rely mainly on numerical exper.iments; the 

stability criterion for the present scheme has ,not been analyzedr These prob 

lems can only be resolved by a thorough.mathe&a&al analysis of the present 

procedure. 

In view of the findings up-to-date further work will be continued as 

follows: 

Investigate the mathematical structure of the two-step, 
time-splitting, weak-solution formulation developed in 
this study. 

Incorporate a subroutine to properly account for the 
free surface movement. 

Incorporate a large system equation solver. 

Include subprograms for plastic yielding and material 
fracture. 

Develop a code for coupling Eulerian and Lagrangian 
modes. 

Prepare and run the demonstration problems. 
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